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Appendix A.1 extends the results in Section 4 on the identification of coefficients in a linear

structure. Section A.1.1 allows for exogenous random coefficients and accommodates condition-

ing on covariates. Section A.1.2 reports empirical estimates that complement those in Section

8.1. Section A.1.3 studies a panel structure. Sections A.1.4 and A.1.5 study proxies that are

included in the Y equation. Appendix A.2 characterizes the OVB of nonparametric regression

and IV methods when U enters the Y and W equations additively separably. Appendix A.3

characterizes the nonparametric regression bias for β̄(x, x∗|x∗) and β̄(x|x) in the nonseparable

case with discrete U , yielding analogous results to Theorem 5.1 with continuous U .

A.1 Linear Specification: Extensions

Except in Sections A.1.1 and A.1.2, we leave the covariates S implicit in the remainder of

Section A.1 in order to ease the exposition.

A.1.1 Exogenous Random Coefficients and Conditioning on the Covariates

Theorem A.1 generalizes Theorem 4.1 to allow for exogenous random coefficients and to ac-

commodate the observed covariates S. In particular, Section A.1 allows the coefficients in S.2

to depend on S and either UY or UW (we sometimes leave the dependence of the coefficients on

(S, UY ) or (S, UW ) implicit to simplify the notation):

Y = r(X,S, U, UY ) = X ′β(S, UY ) + U ′δY (S, UY ) + αY (S, UY ), and

W ′ = q(S, U, UW )′ = U ′δW (S, UW ) + α′W (S, UW ).

We also extend the expected value notation from Section 4 and write the deviation of a vector

A from its conditional mean as follows:

Ā(S) ≡ E(A|S) and Ã(S) ≡ A− Ā(S).
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Further, for random vectors B and C of equal dimension, we denote the conditional linear IV

regression estimand and residual by:

RA.B|C(s) ≡ Cov(C,B|S = s)−1Cov(C,A|S = s) and ε′A.B|C(s) ≡ Ã′(s)− B̃′(s)RA.B|C(s).

If B = C, we obtain the conditional linear regression estimand RA.B(s) ≡ RA.B|B(s) and residual

εA.B(s) ≡ εA.B|B(s). Last, for a given s ∈ S, we rewrite the equations for Y and W to absorb

into ηY and ηW the deviations of the slope coefficients from their conditional means:

Y = X ′β̄(s) + U ′δ̄Y (s) + ηY with ηY ≡ αY +X ′β̃(s) + U ′δ̃Y (s), and

W ′ = U ′δ̄W (s) + η′W with η′W ≡ α′W + U ′δ̃W (s).

Theorem A.1 extends Theorem 4.1 to accommodate random, albeit exogenous, coefficients

and the covariates S.

Theorem A.1 Assume S.2 (allowing the coefficients to depend on either (S, UY ) or (S, UW )) with

` = k and m = l. Let s ∈ S with Cov[Z, (Y,W ′)′|S = s] <∞.

(i) If (i.a) Cov(Z,X|S = s) is nonsingular and (i.b) Cov(ηY , Z|S = s) = 0 then

B(s) ≡ RY.X|Z(s)− β̄(s) = RU.X|Z(s)δ̄Y (s).

(ii) If, in addition to (i.a), (ii.a) δ̄W (s) is nonsingular with δ̄(s) ≡ δ̄−1
W (s)δ̄Y (s) and (ii.b)

Cov(ηW , Z|S = s) = 0 then

B(s) = RW.X|Z(s)δ̄(s).

Theorem A.1 derives the conditional (IV) regression OVB B(s) and shows how it depends

on RU.X|Z(s) and δ̄Y (s). Conditions (i.b) and (ii.b) of Theorem A.1 allow the slope coefficients

to be random but restrict the coefficient heterogeneity to be exogenous such that the repre-

sentation from Theorem 4.1 with constant coefficients holds (at the coefficients’ conditional

averages). In particular, it suffices for conditions (i.b) and (ii.b) that2 Cov[(αY , α
′
W )′, Z] = 0,

E(β̃|Z,X) = 0, and E[(δ̃′Y , δ̃
′
W )′|Z,U ] = 0 so that the random effects3 β and (δ′Y , δ

′
W )′ are mean

independent of (Z,X) and (Z,U) respectively. In this sense, (αY , β, δY ) and (αW , δW ) are ex-

ogenous (“uncorrelated”) random coefficients4. The endogeneity or “essential heterogeneity” is

2If, in addition to E(β̃|Z,X) = 0 and E[(δ̃′Y , δ̃
′
W )′|Z,U ] = 0, one strengthens Cov[(αY , α

′
W )′, Z] = 0 to

require E[(α̃Y , α̃
′
W )′|Z] = 0 then E[(η̃Y , η̃

′
W )|Z) = 0. In this case, E(Ỹ − X̃ ′β̄ − W̃ ′δ̄|Z) = 0 and it may be

possible to generate a sufficient number of instruments f(Z) to point identify β̄ via the alternative estimand
RY.(X′,W ′)′|f(Z). Nevertheless, E[(η̃Y , η̃

′
W )|Z] = 0 is stronger than necessary to characterize the OVB of RY.X|Z

in Theorem A.1. Instead, the weaker condition Cov(ηY , Z) = 0 suffices.
3If X = p̃(Z,UX) then E(β̃|Z,UX) = 0 implies E(β̃|Z,X) = 0. For example, this assumes that the average

return to education does not depend on the distance to school Z and the unobserved skill UX .
4In the linear correlated random coefficient model, if valid instruments are available then one can also consider

IV methods, e.g. Wooldridge (1997, 2003) and Heckman and Vytlacil (1998).
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due to U . When a proxy is available, Theorem A.1 characterizes β̄(s) by

β̄(s) = RY.X|Z(s)−RW.X|Z(s)δ̄(s).

Analogously to the results in Section 4, magnitude and sign restrictions on δ̄(s) can then be

used to either point or partially identify β̄(s).

We comment on certain special cases that arise when allowing for covariates in S.2. If δ̄W (S),

β̄(S), and δ̄Y (S) are constant then variation in the covariates S may point identifying (β̄′, δ̄′)′.

In particular, when Theorem A.1 holds for all s ∈ S, we obtain

Cov(Z, Y |S) = Cov(Z,X|S)β̄ + Cov(Z,W |S)δ̄,

and (β̄′, δ̄′)′ is point identified if variation in S generates a system of at least k + m linearly

independent equations5. Even if this fails, applying the law of iterated expectations gives

β̄ = E(Z̃(S)X̃ ′(S))−1E(Z̃(S)Ỹ (S))− E(Z̃(S)X̃ ′(S))−1E(Z̃(S)W̃ (S))δ̄.

In addition to δ̄, this expression involves two IV regression estimands. Moreover, if Z̄(S) and/or

the conditional expectations (X̄(S)′, W̄ (S)′, Ȳ (S))′ are affine in S, we obtain

β̄ = E(εZ.Sε
′
X.S)−1E(εZ.Sε

′
Y.S)− E(εZ.Sε

′
X.S)−1E(εZ.Sε

′
W.S)δ̄.

Using partitioned regressions (Frisch and Waugh, 1933), the two residual-based IV estimands in

this expression can be recovered as the coefficients associated with X in the linear IV regression

estimands RY.(X′,S′)′|(Z′,S′)′ and RW.(X′,S′)′|(Z′,S′)′ .

A.1.2 Linear Return to Education: Results under Some Alternative Assumptions

We briefly report some empirical results on the return to education and the black white wage

gap that complement those obtained in Section 8.1 under restrictions on confounding. Here,

we maintain the linear return to education specification in Table 1. First, we consider the

bounds that result when assuming that W measures U with classical measurement error6 (see

e.g. Klepper and Leamer (1984) and Bollinger (2003)). In this case, the perfect proxy estimate

for δ̄Y
δ̄W

in Table 1 provides the lower bound on δ̄Y
δ̄W

but the estimate for the upper bound on δ̄Y
δ̄W

is

very large, admitting values of d that correspond to unlikely β̄ values (e.g. large negative return

to education and a large wage gap in favor of blacks). Second, as discussed in Section A.1.1, we

also study identifying (γ̄′, δ̄Y
δ̄W

)′ (and thus β̄) when W is an imperfect proxy by using covariate-

conditioned IV regressions of Y on (1, G′X ,W )′ using functions of (G′X , S
′)′ as instruments. In

5In particular, we have E[Z̃(S)(Y − X ′β̄ −W ′δ̄)|S] = 0 and (β̄′, δ̄′)′ may be identified if interacting Z̃(S)
with functions of S generates sufficiently many instruments.

6This hold if Cov(UY , (G
′, U)′) = 0 and Cov(UW , (G

′, U, U ′Y )′) = 0 in equations (13).
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particular, using the W equation, we substitute for U in the Y equation. Then we consider

excluding parental education variables (e.g. mother or father education) from GS and using

these as instruments for W . However, this yields unstable (e.g. varying depending on whether

the mother’s or father’s education is used as an instrument) and imprecise estimates. Also,

we estimate (γ̄′, δ̄Y
δ̄W

)′ via a two stage least squares regression of Y on (1, G′X ,W,GS)′ where we

restrict GS to S1 and use the interaction7 of GX and S1 as instruments for W (or for (GX ,W )

instead). This estimates δ̄Y
δ̄W

to be 0.54 with CI0.95 [0.18, 0.90], the return to education to be 3.4%

with CI0.95 [0.6%, 6.1%], and the black-white wage gap to be −6.6% with CI0.95 [−15.6%, 2.3%].

Qualitatively similar results obtain when we condition on the fuller set of covariates GS and/or

augment the vector of instruments with the product of GX and an indicator for low parental

education8.

A.1.3 Panel with Individual and Time-Varying Random Coefficients

We consider a panel structure whereby we index the observed variables Mt and the exogenous

random coefficients in S.2 by t. It suffices to consider two time periods t = 1, 2. Here, U may

denote time-invariant unobserved individual characteristics. We allow the proxy Wt for U to

be an element X1t
k1×1

of Xt. Thus, for t = 1, 2:

Yt = X ′tβt + U ′δYt + αYt = X ′tβ̄t + U ′δ̄Yt + ηYt , and

X ′1t = U ′δX1t + α′X1t
= U ′δ̄X1t + η′X1t

,

where ηYt ≡ αYt + X ′tβ̃t + U ′δ̃Yt and η′X1t
≡ α′X1t

+ U ′δ̃X1t . This is a panel structure with

individual (we omit the index i for succinctness) and time-varying random coefficients. Note

that we do not require “fixed effects” and thus δYt need not equal δYt′ .

For t, t′ = 1, 2, t 6= t′, we apply Theorem A.1, using X1t′ as proxy, to derive an expression

for β̄t. In this case, the conditions in Theorem A.1 require that (i.a) Cov(Zt, Xt) is nonsingular,

(i.b) Cov(ηYt , Zt) = 0, (ii.a) δ̄X1t′
is nonsingular and (ii.b) Cov(ηX1t′

, Zt) = 0. For example, it

suffices for condition (ii.b) that Cov(αX1t′
, Zt) = 0 and E(δX1t′

|U,Zt) = E(δX1t′
). Then, with

δ̄t ≡ δ̄−1
X1t′

δ̄Yt , Theorem A.1 gives that for t, t′ = 1, 2, t 6= t′, the IV regression bias is

Bt ≡ RYt.Xt|Zt − β̄t = RU.Xt|Zt δ̄Yt = RX1t′ .Xt|Zt δ̄t.

Here, β̄t is point identified (1) under exogeneity with β̄t = RYt.Xt|Zt , which holds if Cov(U,Zt) =

0, and thus RX1t′ .Xt|Zt = 0, or δ̄t = 0, (2) when X1t′ is a perfect proxy with degenerate

(αX1t′
, δX1t′

) and Cov(ηYt , (Z
′
t, U

′)′) = 0, so that (β̄′t, δ̄t)
′ = RYt.(X′t,X

′
1t′ )
′|(Z′t,X′1t′ )

′ , or (3) under

7The product of GX with each of the indicators 1{S1 = s1} for s1 = (0, 1), (1, 0), and (1, 1)
8This indicator takes the value 1 if neither parent has 12 or more years of education and is 0 otherwise.
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proportional confounding when δ̄t = dt is known. Alternatively, weaker restrictions on δ̄t

partially identify β̄jt, as in Corollary 4.3, in the region Bjt(×k1h=1Dht) for j = 1, ..., k and t = 1, 2.

A.1.4 “Under-Identification” Using Valid Instruments

It is possible that a proxy directly impacts the response Y . In this case, W = X1, a component

of X. While Theorem A.1 does not rule out that W and X have common elements, conditions

(i.a) and (ii.b) imply that Z must be endogenous (i.e. correlated with U) in this case since

Cov(Z,X) is singular otherwise. Nevertheless, a vector Z1 of one or a few valid instruments

may be available and the dimension of X may exceed that of Z1. A researcher may wish to

employ the exogenous instruments Z1. The next Theorem studies this possibility and provides

an expression for β̄ which depends on the average direct effect of U on Y and the average effect

of U on X1. For this, we write

X ′1 = U ′δX1 + α′X1
= U ′δ̄X1 + η′X1

with η′X1
≡ α′X1

+ U ′δ̃X1 .

Theorem A.2 Assume S.2 (allowing the coefficients to depend on UY or UW ) with Z
`×1
≡

( Z1
`1×1

′, Z2
`2×1

′)′, X
k×1
≡ (X1

k1×1

′, X2
k2×1

′)′, W = X1, with `1, `2 ≥ 0, ` = k, k1 = l.

(i) If (i.a) Cov(Z,X) is nonsingular, (i.b) Cov(ηY , Z) = 0, and (i.c) Cov(U,Z1) = 0 then

B ≡ RY.X|Z − β̄ = Cov(Z,X)−1

[
0

Cov(Z2, U)

]
δ̄Y .

(ii) If (ii.a) δ̄X1 is nonsingular with δ̄ ≡ δ̄−1
X1
δ̄Y and (ii.b) Cov(ηX1 , Z2) = 0 then

B = Cov(Z,X)−1

[
0

Cov(Z2, X1)

]
δ̄.

The conditions in Theorem A.2 are analogous to those in Theorem A.1, except that they

assume that Z1 is uncorrelated with U and let Z1 freely depend on ηX1 . Thus, if Z = Z2,

Theorem A.2 reduces to Theorem A.1 with W = X1 and no covariates. Instead, if Z = Z1 then

exogeneity holds. Here, (1) β̄ = RY.X|Z under exogeneity which holds if Cov(U,Z2) = 0, and

thus Cov(Z2, X1) = 0, or δ̄ = 0, (2) (β̄(1)′+ δ̄′, β̄(2)′)′ = RY.X|Z when9 X1 is a perfect proxy with

degenerate (αX1 , δX1), and (3) β̄ is point identified under proportional confounding (δ̄ = d).

Otherwise, β̄j, j = 1, ..., k, is partially identified in the region Bj(×k1h=1Dh) under assumptions

on how the average direct effect of U on Y compares in magnitude and/or sign to the average

effect of U on X1.

9We partition β̄ = (β̄(1)′, β̄(2)′)′ corresponding to X = (X ′1, X
′
2)′.
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A.1.5 Multiple Included Proxies

When W = X1, condition (ii.b) of Theorem 4.1 generally rules out that X1 is a component of

Z. We relax this requirement and let W = (X ′1, X
′
2)′ with two proxy vectors X1 and X2 that

are included in the Y equation and where X1, and possibly X2, is a component of Z. This

allows for Z = X. Theorem A.3 derives an expression for β̄ which depends on the unknowns

δ̄−1
X1
δ̄Y and δ̄−1

X2
δ̄Y involving the average direct effect of U on Y and the average effects of U on

X1 and X2. Here, we let Z1 = X1 and

X ′g = U ′δXg + α′Xg
= U ′δ̄Xg + η′Xg

where η′Xg
≡ α′Xg

+ U ′δ̃Xg for g = 1, 2.

Theorem A.3 Assume S.2 (allowing the coefficients to depend on UY or UW ) and let W =

(X1
k1×1

′, X2
k2×1

′)′, X
k×1

= (W ′, X3
k3×1

′)′, Z1 = X1, Z
`×1
≡ ( Z1

`1×1

′, Z2
`2×1

′)′, k1 = k2 = l, k3 ≥ 0, ` = k.

(i) If (i.a) Cov(Z,X) is nonsingular and (i.b) Cov(ηY , Z) = 0 then

B ≡ RY.X|Z − β̄ = RU.X|Z δ̄Y .

(ii) If (ii.a) δ̄Xg is nonsingular with δ̄g ≡ δ̄−1
Xg
δ̄Y , g = 1, 2, (ii.b) Cov[ηX1 , (U

′, Z ′2, X
′
2)′] = 0, and

(ii.c) Cov(ηX2 , U) = 0 then

B = Cov(Z,X)−1

[
Cov(Z1, X2)δ̄2

Cov(Z2, X1)δ̄1

]
.

The conditions in Theorem A.3 extend those in Theorem A.1 to allow the included proxies

X1 and X2 to be components of Z but they restrict the dependence between X2 and ηX1 as

well as the dependence between U and (ηX1 , ηX2). Here too, U may depend on X and Z.

We use the expression for β̄ in Theorem A.3 to point or partially identify the elements of β̄.

Corollary A.4 Assume the conditions of Theorem A.3. (i) If Bj = 0 (exogeneity) then β̄j =

RY.X|Z,j for j = 1, ..., k. (ii) If X1 (or symmetrically X2) is a perfect proxy with degenerate

(αX1 , δX1) then10 RY.X|Z = (β̄(1)′ + δ̄′, β̄(2)′, β̄(3)′)′ (iii) If δ̄1 = c1 and δ̄2 = c2 (proportional

confounding) then

B = RY.X|Z − β̄ = Cov(Z,X)−1

[
Cov(Z1, X2)c2

Cov(Z2, X1)c1

]
.

In particular, let d ≡ (c′1, c
′
2)′, δ̄ ≡ (δ̄′1, δ̄

′
2)′, X2,3 ≡ (X ′2, X

′
3)′, P1

k1×k1
≡ Cov(εZ1.Z2|X2,3 , X1),

P2
(k2+k3)×(k2+k3)

≡ Cov(εZ2.Z1|X1 , X2,3), and

A
k×(k1+k2)

≡
[
−RX2,3.X1|Z1P

−1
2 Cov(Z2, X1), P−1

1 Cov(Z1, X2)
P−1

2 Cov(Z2, X1), −RX1.X2,3|Z2P
−1
1 Cov(Z1, X2)

]
.

10We partition β̄ = (β̄(1)′, β̄(2)′, β̄(3)′)′ corresponding to X = (X ′1, X
′
2, X

′
3)′.
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Then

B = Aδ̄ and β̄j = RY.X|Z,j −
∑2l

h=1Ajhdh for j = 1, ..., k.

Thus, β̄j is point identified (1) under exogeneity which holds if Cov(U,Z) = 0, and thus

Cov(Z2, X1) = 0, or δ̄ = 0, (2) if X1 (or symmetrically X2) is a perfect proxy and β̄j is

an element of (β̄(2)′, β̄(3)′)′, or (3) under proportional confounding (δ̄ = d). Otherwise, β̄j,

j = 1, ..., k, is partially identified in the region Bj(×2l
h=1Dh), defined analogously to Corollary

4.3, under assumptions on how the average direct effect of U on Y compares in magnitude and

sign to the average effects of U on X1 and X2.

A.2 Additively Separable Confounders

This section studies the special case in which U enters r and q additively separably.

Assumption 4 (S.4) Additive Separability: Assume S.1 with

Y = r(X,U, UY ) = r̈(X,UY ) + U ′δY (UY ), and

W ′ = q(U,UW )′ = U ′δW (UW ) + α′W (UW ).

The exogenous random coefficient specification from Section A.1 is a special case of S.4 (for

simplicity, S.4 leaves the covariates S implicit) that further assumes that the effect of X on Y

is linear.

A.2.1 Average Nonparametric Effects

Under S.4 (separability) and condition (6a), the law of iterated expectations gives:

β̄(x, x∗|x∗) = E[r̈(x∗, UY )− r̈(x, UY )] = β̄(x, x∗).

Similarly, under S.4 and condition (6b), we obtain:

β̄(x|x) = E[
∂

∂x
r̈(x, UY )] = β̄(x).

Theorem A.5 characterizes the OVB of the nonparametric regression estimands RN
Y.X(x, x∗) or

RN
Y.X(x) for β̄(x, x∗) or β̄(x) under S.4.

Theorem A.5 Assume S.4 with m = l and let x, x∗ ∈ X .

(i.a) If conditions B.1(i.a) and (6a) hold then

B(x, x∗) ≡ RN
Y.X(x, x∗)− β̄(x, x∗) = RN

U.X(x, x∗)δ̄Y .
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(i.b) If (i.b.1) δ̄W is nonsingular with δ̄ ≡ δ̄−1
W δ̄Y and (i.b.2) conditions B.1(i.e) and (7) hold

then

B(x, x∗) = RN
W.X(x, x∗)δ̄.

(ii.a) Set k = 1 and assume the conditions in (i.a). If (ii.a.1) ∂
∂x
E(U ′|X = x) exists and is finite

and (ii.a.2) for all x† ∈ N (x) ⊆ X , a nonempty open neighborhood of x, E[r̈(x†, UY )] < ∞,
∂
∂x
r̈(x†, uy) exists for a.e. uy, and there is a function ∆(UY ) with E[∆(UY )] < ∞ such that∣∣ ∂

∂x
r̈(x†, uy)

∣∣ < ∆(uy) for a.e. uy then

B(x) ≡ RN
Y.X(x)− β̄(x) = RN

U.X(x)δ̄Y .

(ii.b) If the conditions in (i.b) and (ii.a.1) hold then

B(x) = RN
W.X(x)δ̄.

The conditions in (ii.a) ensure that the moments and derivatives exist and that ∂
∂x
E[r̈(x, UY )] =

E[ ∂
∂x
r̈(x, UY )]. The expressions in (i.a) and (ii.a) for the biases B(x, x∗) and B(x) show how

the OVB depends on RN
U.X(x, x∗) and δ̄Y . As in the linear case, under conditional exogene-

ity β̄(x, x∗) = RN
Y.X(x, x∗) is point identified. This obtains if E(U |X) = E(U), in which case

RN
W.X(x, x∗) = 0, or δ̄Y = 0. Alternatively, if W is a perfect proxy with (δW , αW ) degenerate

then, provided UY⊥(U,X), we have that β̄(x, x∗) and δ̄ are point identified by:

E(Y |X = x∗,W = w)− E(Y |X = x,W = w) = β̄(x, x∗) and

1

(w∗ − w)
E(Y |X = x,W = w∗)− E(Y |X = x,W = w) = δ̄.

When W is an imperfect proxy, Theorem A.5 shows that β̄(x, x∗) and β̄(x) depend on the

average direct effect of U on Y and the average effect of U on W via δ̄ ≡ δ̄−1
W δ̄Y :

β̄(x, x∗) = RN
Y.X(x, x∗)−RN

W.X(x, x∗)δ̄ and β̄(x) = RN
Y.X(x)−RN

W.X(x)δ̄.

In this case, β̄(x, x∗) is point identified under proportional confounding, when δ̄ = d is known.

Alternatively, restrictions δ̄h ∈ Dh ≡ [dL,h, dH,h] on the magnitude and/or sign of confounding

can partially identify β̄(x, x∗) in the region B(×mh=1Dh) given by:

β̄(x, x∗) ∈ B(×mh=1Dh) ≡ {RN
Y.X(x, x∗)−RN

W.X(x, x∗)d : dh ∈ Dh, h = 1, ...,m}.

These restrictions are weaker than requiring δ̄ = 0 (which ensures exogeneity when RN
W.X(x) 6=

0 and U depends on X), a perfect proxy estimate for δ̄, or proportional confounding (δ̄ =

d). Arguments similar to those in the proofs of corollaries 4.3 and 5.2 show that the region

B(×mh=1Dh), defined above, is sharp under the assumptions in Theorem A.5 and the restrictions

Dh, h = 1, ...,m, on confounding. Analogous results hold for β̄(x).
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Last, Theorem A.5 shows that imposing m restrictions on β̄(·, ·) or β̄(·) provides another

avenue to point identify β̄(x, x∗) or β̄(x). For example, if m = l = 1 and one assumes that

β̄(x†, x‡) = 0 for x†, x‡ ∈ X , as occurs if a nondegenerate component of X is excluded from

r and thus the Y equation, then, provided RN
W.X(x†, x‡) 6= 0, δ̄ =

RN
Y.X(x†,x‡)

RN
W.X(x†,x‡)

and β̄(x, x∗) is

therefore point identified. Analogous restrictions can point identify β̄(x).

A.2.2 Local and Marginal Treatment Effects

Suppose, in addition to S.4, that X is generated as in S.3 so that:

Y = r̈(X,UY ) + U ′δY (UY ), X = 1{UX ≤ ν(Z)}, and W ′ = U ′δW (UW ) + α′W (UW ).

Given separability in S.4 and condition (10), the law of iterated expectations gives:

β̄(ν(z) < UX ≤ ν(z∗), z∗) = E[r̈(1, UY )− r̈(0, UY )|ν(z) < UX ≤ ν(z∗)] = β̄(ν(z) < UX ≤ ν(z∗))

and

β̄(ν(z), z) = E[r̈(1, UY )− r̈(0, UY )|UX = ν(z)] = β̄(ν(z)).

Theorem A.6 characterizes the OVB of the Wald or LIV estimand for LATE or MTE.

Theorem A.6 Assume S.3 and S.4 with m = l. Let z, z∗ ∈ Z with Pr[ν(z) < UX ≤ ν(z∗)] > 0.

(i.a) If conditions B.2(i.a) and (9,10) hold then

B(ν(z) < UX ≤ ν(z∗)) ≡ RWald
Y.X|Z(z, z∗)− β̄(ν(z) < UX ≤ ν(z∗)) = RWald

U.X|Z(z, z∗)δ̄Y .

(i.b) If (i.b.1) δ̄W is nonsingular with δ̄ ≡ δ̄−1
W δ̄Y and (i.b.2) conditions B.2(i.e) and (11) hold

then

B(ν(z) < UX ≤ ν(z∗)) = RWald
W.X|Z(z, z∗)δ̄.

(ii.a) Set ` = 1 and assume the conditions in (i.a). If (ii.a.1) ∂
∂z
E(U ′|Z = z) exists and (ii.a.2)

ν(·) is differentiable at z with ∂
∂z
ν(z) 6= 0 and β̄(·) and fUX

(·) are continuous at ν(z) with

fUX
(ν(z)) > 0 then

B(ν(z)) ≡ RLIV
Y.X|Z(z)− β̄(ν(z)) = RLIV

U.X|Z(z)δ̄Y .

(ii.b) If the conditions in (i.b) and (ii.a.1) hold then

B(ν(z)) = RLIV
W.X|Z(z)δ̄.

The regularity conditions in (ii.a) enable applying theorems for the derivative of an integral.

The expression for the Wald OVB shows how this depends on RN
U.Z(z, z∗) and δ̄Y . The OVB
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vanishes under exogeneity, which holds if E(U |Z) = E(U), and thus RWald
W.X|Z(z, z∗) = 0, or

δ̄Y = 0. In this case, we obtain the standard point identification result:

β̄(ν(z) < UX ≤ ν(z∗)) = RWald
Y.X|Z(z, z∗).

If W is a perfect proxy, with (δW , αW ) degenerate, then provided (UX , UY )⊥(U,Z), we have

that β̄(ν(z) < UX ≤ ν(z∗)) and δ̄ are point identified:

E(Y |Z = z∗,W = w)− E(Y |Z = z,W = w)

E(X|Z = z∗,W = w)− E(X|Z = z,W = w)
= β̄(ν(z) < UX ≤ ν(z∗)) and

1

(w∗ − w)
E(Y |Z = z,W = w∗)− E(Y |Z = z,W = w) = δ̄.

When W is an imperfect proxy, Theorem A.6 gives that

β̄(ν(z) < UX ≤ ν(z∗)) = RWald
Y.X|Z(z, z∗)−RWald

W.X|Z(z, z∗)δ̄.

Thus, proportional confounding, with known δ̄ = d, also point identifies β̄(ν(z) < UX ≤ ν(z∗)).

Alternatively, magnitude and sign restrictions on confounding partially identify LATE:

β̄(ν(z) < UX ≤ ν(z∗)) ∈ B(×mh=1Dh) ≡ {RWald
Y.X|Z(z, z∗)−RWald

W.X|Z(z, z∗)d : dh ∈ Dh, h = 1, ...,m}.

These restrictions are are weaker than requiring δ̄ = 0 (which ensures exogeneity whenRWald
W.X|Z(z, z∗) 6=

0 and U depends on Z), a perfect proxy estimate for δ̄, or proportional confounding (δ̄ = d).

Arguments similar to those in the proofs of corollaries 4.3 and 6.2 show that the region

B(×mh=1Dh), defined above, is sharp under the assumptions in Theorem A.6 and the restric-

tions Dh, h = 1, ...,m, on confounding. Analogous results obtain for β̄(ν(z)).

Building on the results in Heckman and Vytlacil (2005), the bounds on MTE can be used

to point or partially identify the average treatment effects for the population, treated, and

untreated under restrictions on confounding. Similar to when exogeneity holds, this requires

support conditions for Z. In particular, since UX is absolutely continuous, we obtain the

convenient representation

X = 1{UX ≤ ν(Z)} = 1{FUX
(UX) ≤ FUX

(ν(Z))} = 1{V ≤ P}

where V v Unif [0, 1] and P ≡ p(Z) equals the propensity score Pr(X = 1|Z) when UX ⊥ Z.

For instance, we can rewrite the MTE β̄(ν(z)) as β̄(p) ≡ E[β(U,UY )|V = p], with p = p(z).

Applying Theorem A.6 for almost every p using the representation X = 1{V ≤ P} with

potential instrument P ≡ p(Z), gives that β̄(p) = RLIV
Y.X|P (p) − RLIV

W.X|P (p)δ̄. If P has the unit

interval for support then the average treatment effect is characterized by:

β̄ =

∫ 1

0

β̄(p)dp =

∫ 1

0

[RLIV
Y.X|P (p)−RLIV

W.X|P (p)δ̄]dp.
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Similarly, the average treatment effects for the treated and untreated are characterized respec-

tively by∫ 1

0

[RLIV
Y.X|P (p)−RLIV

W.X|P (p)δ̄]
(1− FP (p))

E(P (Z))
dp and

∫ 1

0

[RLIV
Y.X|P (p)−RLIV

W.X|P (p)δ̄]
FP (p)

E(1− P (Z))
dp.

As these expressions show, these average effects are point identified under conditional exogene-

ity, e.g. B(p) = 0, using a perfect proxy to point identify δ̄, or under proportional confounding

with δ̄ = d. Moreover, they are partially identify under sign and magnitude restrictions on δ̄.

Last, Theorem A.6 also shows how imposing m restrictions on β̄(ν(z) < UX ≤ ν(z∗))

or β̄(ν(z)) can point identify this effect. For example, if m = l = 1 and one assumes that

β̄(ν(z†) < UX ≤ ν(z‡)) = β̄(ν(ż) < UX ≤ ν(z̈)) for z†, z‡, ż, z̈ ∈ Z, as occurs if a nondegenerate

component of Z is excluded from ν and thus the X equation, then, provided RWald
W.X|Z(z†, z‡) 6=

RWald
W.X|Z(ż, z̈), δ̄ =

RWald
Y.X|Z(ż,z̈)−RWald

Y.X|Z(z†,z‡)

RWald
W.X|Z(ż,z̈)−RWald

W.X|Z(z†,z‡)
and β̄(ν(z) < UX ≤ ν(z∗)) is therefore point identified.

Analogous restrictions can point identify β̄(ν(z)).

A.3 Nonseparable Discrete Confounder

Let r and q be nonseparable functions, with Y and W generated as in S.1:

Y = r(X,U, UY ) and W = q(U,UW ).

Theorem A.7 characterizes the nonparametric bias B(x, x∗|x∗) or B(x|x) of RN
Y.X(x, x∗) or

RN
Y.X(x) in recovering the average effects β̄(x, x∗|x∗) or β̄(x|x) in the case of discrete U . This

complements the results in Theorem 5.1 for continuous U . As in Corollary 5.2, β̄(x, x∗|x∗)
or β̄(x|x) are partially identified by imposing restrictions on the average effects of U , when

changing u to u∗, on Y at x and on the scalar W , denoted by:

δ̄Y (u, u∗;x) ≡ r̄(x, u∗)− r̄(x, u) ≡ E[r(x, u∗, UY )− r(x, u, UY )] and

δ̄W (u, u∗) ≡ q̄(u∗)− q̄(u) ≡ E[q(u∗, UW )− q(u, UW )].

Theorem A.7 Assume S.1 with m = l = 1 and x, x∗ ∈ X . Suppose that Ux ∪ Ux∗ =

{u0, u1, ..., uL} with ug−1 < ug for g = 1, ..., L and that r̄(ẍ, u) <∞ and q̄(u) <∞ for ẍ = x, x∗

and all u ∈ {u0, u1, ..., uL}.
(i.a) If condition (6a) holds then

B(x, x∗|x∗) ≡ RN
Y.X(x, x∗)− β̄(x, x∗|x∗)

= −
L∑
g=1

δ̄Y (ug−1, ug;x)[FU |X(ug−1|x∗)− FU |X(ug−1|x)].
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(i.b) If condition (7) holds then

RN
W.X(x, x∗) = −

L∑
g=1

δ̄W (ug−1, ug)[FU |X(ug−1|x∗)− FU |X(ug−1|x)].

(ii) Set k = 1 and suppose that ∂
∂x
fU |X(ug|x) exists and is finite for all ug ∈ {u0, u1, ..., uL}.

(ii.a) If conditions B.1(ii.c) and (6a,6b) hold then

B(x|x) ≡ RN
Y.X(x)− β̄(x|x) = −

L∑
g=1

δ̄Y (ug−1, ug;x)
∂

∂x
FU |X(ug−1|x).

(ii.b) If condition (7) holds then

RN
W.X(x) = −

L∑
g=1

δ̄W (ug−1, ug)
∂

∂x
FU |X(ug−1|x)

B Online Appendix B: Mathematical Proofs

Proof of Theorem 4.1 (i) By (i.b) we have

Cov(Z, Y ) = Cov(Z,X)β̄ + Cov(Z,U)δ̄Y ,

and thus, by (i.a),

RY.X|Z = β̄ +RU.X|Z δ̄Y .

(ii) By (ii.b) we have

Cov(Z,W ) = Cov(Z,U)δ̄W ,

and thus, by (i.a) and (ii.a),

RW.X|Z δ̄ = RU.X|Z δ̄Y .

Proof of Corollary 4.2 (i, iii) The proof is immediate. (ii) Substitute for U ′ = (W ′ −
U ′W ᾱW )δ̄−1

W in the equation for Y and apply Theorem 4.1(i) after relabeling the variables.

Proof of Corollary 4.3 The bounds obtain directly from β̄ = RY.X|Z−RW.X|Z δ̄. We have that

Bj(×mh=1Dh) is sharp since for each b̄j ∈ Bj(×mh=1Dh) there exist random variables (V, VY , VW )

and constant vectors b̄ (whose jth element is b̄j) and d̄Y and matrix d̄W with d̄−1
W d̄Y = d̄ ∈

×mh=1Dh such that Cov[(VY , V
′
W )′, Z] = 0 and

Y = X ′b̄+ V ′d̄Y + VY and W ′ = V ′d̄W + VW .

In particular, consider the linear mapping Lj : D1 × ... × Dm → Bj given by b̄j = RY.X|Z,j −
RW.X|Z,j d̄. Since D1 × ... × Dm is connected, Bj is totally ordered, and Lj is continuous, the
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generalized intermediate value theorem ensures that for every b̄j ∈ Bj(×mh=1Dh), there exists a

vector d̄ ∈ ×mh=1Dh of constants such that Lj(d̄) = b̄j (see e.g. Pugh, 2002, p. 83). Let d̄W and

d̄Y be any constant matrix and vector such that d̄ = d̄−1
W d̄Y (e.g. d̄W = I and d̄Y = d̄) and set

Y ≡ X ′RY.X|Z + εY.X|Z + E(Y −X ′RY.X|Z)

= X ′(RY.X|Z −RW.X|Z d̄) + (X ′RW.X|Z d̄
−1
W )d̄Y + [εY.X|Z + E(Y −X ′RY.X|Z)]

≡ X ′b̄+ V ′d̄Y + VY and

W ≡ X ′RW.X|Z + εW.X|Z + E(W −X ′RW.X|Z)

= (X ′RW.X|Z d̄
−1
W )d̄W + [εW.X|Z + E(W −X ′RW.X|Z)]

≡ V ′d̄W + VW ,

where the above identities and Cov[(VY , V
′
W )′, Z] = 0 hold by the definition of εA.B|C .

We make use of the following regularity conditions in the proof of Theorem 5.1. For this, we

let r̄(x, u) ≡ E[r(x, u, UY )] and q̄(u) ≡ E[q(u, UW )]. It is implicitly assumed that the referenced

derivatives exist. We view the case in which U |X = x (or U |X = x∗) is degenerate as a limiting

case as τ → 0 for a sequence of absolutely continuous F τ
U |X(u|x) that satisfy the regularity

conditions in B.1 (see e.g., Bracewell, 1986).

Assumption B.1 Let x, x∗ ∈ X , and denote by N (u) ⊆ U and N (x) ⊆ X nonempty open

neighborhoods of u and x respectively.

(i.a) E[r(x, U, UY )|X = x∗] <∞ and E(Y |X = ẍ) <∞ for ẍ = x, x∗,

(i.b) Ux∗ = Ux,

(i.c) r̄(x, ·) is absolutely continuous on Ux,

(i.d) for a.e. u and all u† ∈ N (u), r̄(x, u†) < ∞ and there is a function ∆1,u(uy) with

E[∆1,u(UY )] <∞ such that
∣∣ ∂
∂u
r(x, u†, uy)

∣∣ ≤ ∆1,u(uy) for a.e. uy,

(i.e) E(W |X = ẍ) <∞ for ẍ = x, x∗,

(i.f) q̄(·) is absolutely continuous on Ux,

(i.g) for a.e. u and all u† ∈ N (u), q̄(u†) < ∞ and there is a function Γ1,u(uw) with

E[Γ1,u(UW )] <∞ such that
∣∣ ∂
∂u
q(u†, uw)

∣∣ ≤ Γ1,u(uw) for a.e. uw,

(ii.a) for all x† ∈ N (x), Ux† = Ux and FU |X(·|x†) is absolutely continuous on Ux,

(ii.b) for all x† ∈ N (x),
∫
Ux r̄(x

†, u)fU |X(u|x†)du < ∞ and there is a function ∆2(u) with∫
Ux ∆2(u)du <∞ such that

∣∣ ∂
∂x
{r̄(x†, u)fU |X(u|x†)}

∣∣ ≤ ∆2(u) for a.e. u,

(ii.c) for a.e. u and all x† ∈ N (x), r̄(x†, u) < ∞ and there is a function ∆3,u(uy) with

E[∆3,u(UY )] <∞ such that
∣∣ ∂
∂x
r(x†, u, uy)

∣∣ ≤ ∆3,u(uy) for a.e. uy,

(ii.d) for all x† ∈ N (x), there is a function ∆4(u) with
∫
Ux ∆4(u)du < ∞ such that∣∣ ∂

∂x
fU |X(u|x†)

∣∣ ≤ ∆4(u) for a.e. u,
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(ii.e) for all x† ∈ N (x),
∫
Ux q̄(u)fU |X(u|x†)du < ∞ and there is a function Γ2(u) with∫

Ux Γ2(u)du <∞ such that
∣∣q̄(u) ∂

∂x
fU |X(u|x†)

∣∣ ≤ Γ2(u) for a.e. u.

The absolute continuity of r̄(x, ·) and q̄(·) on Ux in B.1 ensures that ∂
∂u
r̄(x, ·) and ∂

∂u
q̄(·)

exist for a.e. u and are integrable. Assuming that derivatives are bounded almost everywhere

by an integrable function justifies the interchange of derivative and integral.

Proof of Theorem 5.1: (i.a) By B.1(i.a), we have

β̄(x, x∗|x∗) = RN
Y.X(x, x∗)− {E[r(x, U, UY )|X = x∗]− E[r(x, U, UY )|X = x]},

where the second term is B(x, x∗|x∗). Using equation (6a), we have for ẍ = x, x∗:

E[r(x, U, UY )|X = ẍ] = E[r̄(x, U) |X = ẍ].

By B.1.i(b, c) and absolutely continuity of FU |X(·|ẍ), integration by parts gives:

B(x, x∗|x∗) =

∫
Ux
r̄(x, u) [fU |X(u|x∗)− fU |X(u|x)]du

= r̄(x, u)[FU |X(u|x∗)− FU |X(u|x)]
∣∣ū
u
−
∫
Ux

∂

∂u
r̄(x, u)[FU |X(u|x∗)− FU |X(u|x)]du,

with u and ū the (possibly infinite) infimum and supremum over Ux. The first term vanishes

and the result obtains since, by B.1(i.d), ∂
∂u
r̄(x, u) = δ̄Y (u;x) for a.e. u (see e.g. Corbae,

Stinchcombe, and Zeman (2009, Theorem 7.5.17) or Bartle (1966, corollary 5.9)).

(i.b) Similarly, equation (7) and B.1.i(b, e, f, g) give

RN
W.X(x, x∗) =

∫
Ux
q̄(u) [fU |X(u|x∗)− fU |X(u|x)]du = −

∫
Ux
δ̄W (u)[FU |X(u|x∗)− FU |X(u|x)]du.

(ii.a) Using equation (6a) and interchanging the derivative and integral by B.1.ii(a, b):

RN
Y.X(x) =

∂

∂x
E[r̄(x, U)|X = x] =

∂

∂x

∫
Ux
r̄(x, u) fU |X(u|x)du

=

∫
Ux

[
∂

∂x
r̄(x, u)]fU |X(u|x)du+

∫
Ux
r̄(x, u)[

∂

∂x
fU |X(u|x)]du ≡ T1 + T2,

where the product rule derivatives exist by B.1.ii(c, d). By B.1(ii.c) and equation (6b):

T1 =

∫
Ux

∂

∂x
E[r(x, u, UY )] fU |X(u|x) du =

∫
Ux
E[

∂

∂x
r(x, u, UY )] fU |X(u|x) du

=

∫
Ux
E[

∂

∂x
r(x, u, UY )|U = u,X = x] fU |X(u|x) du = β̄(x|x).
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By B.1ii(a, d) and B.1 i(c, d), integration by parts gives

T2 = r̄(x, u)
∂

∂x
FU |X(u|x)

∣∣∣∣ū
u

−
∫
Ux

∂

∂u
r̄(x, u)

∂

∂x
FU |X(u|x)du

= −
∫
Ux
δ̄Y (u;x)

∂

∂x
FU |X(u|x)du = B(x|x).

(ii.b) Similarly, equation (7), B.1.i(f, g), and B.1.ii(a, d, e) give

RN
W.X(x) =

∂

∂x

∫
Ux
q̄(u) fU |X(u|x) du = −

∫
Ux
δ̄W (u)

∂

∂x
FU |X(u|x)du

Proof of Corollary 5.2: (i) Since δ̄Y (u;x) = d(u, x)δ̄W (u) for a.e. u ∈ Ux, we have:

B(x, x∗|x∗) = −
∫
Ux
d(u, x)δ̄W (u)[FU |X(u|x∗)− FU |X(u|x)]du.

Since δ̄W (u)[FU |X(u|x∗)− FU |X(u|x)] does not change sign for a.e. u ∈ Ux, and

RN
W.X(x, x∗) = −

∫
Ux
δ̄W (u)[FU |X(u|x∗)− FU |X(u|x)]du,

we have that dL(x) ≤ d(u, x) ≤ dH(x) gives

B(x, x∗|x∗) ∈ {RN
W.X(x, x∗)d : d ∈ D(x)},

The bounds then follow from β̄(x, x∗|x∗) = RN
Y.X(x, x∗)−B(x, x∗|x∗).

B(D(x)) is sharp since for a given x, x∗ ∈ X and each effect b̄(x, x∗|x∗) ∈ B(D(x)) there

exist random variables (V, VY , VW ) and functions r∗ and q∗, such that Y = r∗(X, V, VY ) and

W = q∗(V, VW ), that satisfy the conditions in Theorem 5.1 and Corollary 5.2. For this, let

d(x) =
1

RN
W.X(x, x∗)

(RN
Y.X(x, x∗)− b̄(x, x∗|x∗))

(recall that if RN
W.X(x, x∗) = 0 then B(D(x)) is a singleton) so that d(x) ∈ D(x). Further, let

d−1
W and dY (x) be any constants such that d(x) = d−1

W dY (x) (e.g. dW = 1 and dY (x) = d(x)).

Then it suffices to define V , VY , VW , r∗ and q∗ as follows

Y ≡ E(Y |X) + [Y − E(Y |X)]

= {E(Y |X)− E(W |X)d(x)}+ [E(W |X)d−1
W ]dY (x) + [Y − E(Y |X)]

≡ r∗1(X) + V dY (x) + VY ≡ r∗(X, V, VY ),

W ≡ E(W |X) + [W − E(W |X)] = V dW + VW ≡ q∗(V, VW ),

so that

b̄(x, x∗|x∗) = r∗1(x∗)− r∗1(x) = RN
Y.X(x, x∗)−RN

W.X(x, x∗)d(x).
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By construction of V , VY , and VW , the analogues of equations (6a) and (7) hold since for

x†, ẍ ∈ {x, x∗} and all v ∈ Vẍ, we have:

E[r∗(x†, v, VY )|V = v,X = ẍ] = E[r∗1(x†) + vdY (x) + VY |X = ẍ] = r∗1(x†) + vdY (x) = E[r∗(x†, v, VY )],

E[q∗(v, VW )|V = v,X = ẍ] = E[vdW + VW |X = ẍ] = vdW = E[q∗(v, VW )].

Also, E[ ∂
∂v
q∗(v, VW )] = dW clearly does not change sign. Last, FV |X(v|ẍ) is degenerate:

FV |X(v|ẍ) = Pr[E(W |X = ẍ)d−1
W ≤ v|X = ẍ] = H(v − E(W |X = ẍ)d−1

W ),

whereH(t)

{
1 if 0 ≤ t
0 if t < 0

is the Heaviside step function and we have that FV |X(v|x)−FV |X(v|x∗)

is either nonnegative or nonpositive for all v. Here, we view FV |X(v|ẍ) as a limiting case as

τ → 0 for a sequence F τ
V |X(v|ẍ) that, along with the additively separable functions r∗ and q∗,

satisfy the regularity conditions in B.1 to interchange the order of well defined derivative and

integral (see e.g., Bracewell, 1986).

(ii) The bounds obtain using similar arguments to (i). The sharpness proof constructs V ,

VY , VW , r∗, and q∗ analogously to (i). In particular, for a given x ∈ X and each b̄(x|x) ∈
B(D(x)), set d−1

W dY (x) = d(x) = 1
RN

W.X(x)
(RN

Y.X(x) − b̄(x|x)) so that b̄(x, |x) = ∂
∂x
r∗1(x) =

RN
Y.X(x)−RN

W.X(x)d(x). The analogue of equation (6b) holds since E[ ∂
∂x
r∗(x, v, VY )|V = v,X =

x] = ∂
∂x
r∗1(x) for v = E(W |X = x)d−1

W . Further, we have ∂
∂x
FV |X(v|x) = −RN

W.X(x)d−1
W δ(v −

E(W |X = x)d−1
W ) where δ is the Dirac delta function with an impulse concentrated at E(W |X =

x)d−1
W .

Analogously to Theorem 5.1, Theorem 6.1 employs regularity conditions that we collect in

Assumption B.2. In what follows, we slightly abuse the previous notation and write r̄(z, u) ≡
E[r(1{UX ≤ ν(z)}, u, UY )]. It is implicitly assumed that the referenced derivatives exist. We

view the case in which U |Z = z (or U |Z = z∗) is degenerate as a limiting case as τ → 0 for

a sequence of absolutely continuous F τ
U |Z(u|z) that satisfy the regularity conditions in B.2 (see

e.g., Bracewell, 1986).

Assumption B.2 Let z, z∗ ∈ Z, and denote by N (u) ⊆ U and N (z) ⊆ Z nonempty open

neighborhoods of u and z respectively.

(i.a) E[r(1{UX ≤ ν(z)}, U, UY )|Z = z∗] <∞ and E(Y |Z = z̈) <∞ for z̈ = z, z∗,

(i.b) Uz∗ = Uz,
(i.c) r̄(z, ·) is absolutely continuous on Uz,
(i.d) for a.e. u and all u† ∈ N (u), r̄(z, u†) < ∞ and there is a function Φ1,u(ux, uy) with

E[Φ1,u(UX , UY )] <∞ such that
∣∣ ∂
∂u
r(1{ux ≤ ν(z)}, u†, uy)

∣∣ ≤ Φ1,u(ux, uy) for a.e. (ux, uy),

(i.e) E(W |Z = z̈) <∞ for z̈ = z, z∗,
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(i.f) q̄(·) is absolutely continuous on Uz,
(i.g) for a.e. u and all u† ∈ N (u), q̄(u†) < ∞ and there is a function Υ1,u(uw) with

E[Υ1,u(UW )] <∞ such that
∣∣ ∂
∂u
q(u†, uw)

∣∣ ≤ Υ1,u(uw) for a.e. uw,

(ii.a) for all z† ∈ N (z), Uz† = Uz and FU |Z(·|z†) is absolutely continuous on Uz,
(ii.b) for all z† ∈ N (z),

∫
Uz r̄(z

†, u)fU |Z(u|z†)du < ∞ and there is a function Φ2(u) with∫
Uz Φ2(u)du <∞ such that

∣∣ ∂
∂z
{r̄(z†, u)fU |Z(u|z†)}

∣∣ ≤ Φ2(u) for a.e. u,

(ii.c) ∂
∂z
ν(z) 6= 0 and fUX

(·) is continuous at ν(z) with fUX
(ν(z)) > 0,

(ii.d) for a.e. u, E[β(u, UY )|UX = ·] is continuous at ν(z),

(ii.e) for all z† ∈ N (z), there is a function Φ3(u) with
∫
Uz Φ3(u)du <∞ such that

∣∣ ∂
∂z
fU |Z(u|z†)

∣∣ ≤
Φ3(u) for a.e. u,

(ii.f) for all z† ∈ N (z),
∫
Uz q̄(u)fU |Z(u|z†)du < ∞ and there is a function Υ2(u) with∫

Uz Υ2(u)du <∞ such that
∣∣q̄(u) ∂

∂z
fU |Z(u|z†)

∣∣ ≤ Υ2(u) for a.e. u.

Proof of Theorem 6.1: (i.a) By B.2(i.a), adding and subtracting E(Y |Z = z) gives

γ(z, z∗|z∗) ≡ E[r(1{UX ≤ ν(z∗)}, U, UY )− r(1{UX ≤ ν(z)}, U, UY )|Z = z∗]

= RN
Y.Z(z, z∗; s)− {E[r(1{UX ≤ ν(z)}, U, UY )|Z = z∗]− E[r(1{UX ≤ ν(z)}, U, UY )|Z = z]},

where we label the second term Bγ(z, z
∗|z∗). Further, for z̈ = z, z∗,

E[r(1{UX ≤ ν(z̈)}, U, UY )|Z = z∗] = E[α(U,UY )|Z = z∗] +E[1{UX ≤ ν(z̈)}β(U,UY ) |Z = z∗].

Pr[ν(z) < UX ≤ ν(z∗)] > 0 gives that ν(z) < ν(z∗) and thus

γ(z, z∗|z∗) = E[1{ν(z) < UX ≤ ν(z∗)}β(U,UY ) | Z = z∗]

= E[β(U,UY ) | ν(z) < UX ≤ ν(z∗), Z = z∗]× Pr[ν(z) < UX ≤ ν(z∗) |Z = z∗].

Further, by UX ⊥ Z, we have

RN
X.Z(z, z∗) = E[1{ν(z) < UX ≤ ν(z∗)}] = Pr[ν(z) < UX ≤ ν(z∗)|Z = z∗].

Dividing γ(z, z∗|z∗) by RN
X.Z(z, z∗) > 0 gives the Wald OVB

β̄(0, 1|ν(z) < UX ≤ ν(z∗), z∗) = RWald
Y.X|Z(z, z∗)− 1

RN
X.Z(z, z∗)

Bγ(z, z
∗|z∗).
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To derive the expression for Bγ(z, z
∗|z∗), we apply conditions (9) and (10) for z̈ = z, z∗:

E[r(1{UX ≤ ν(z)}, U, UY )|Z = z̈]

=

∫
Uz
E[α(u, UY ) + 1{UX ≤ ν(z)}β(u, UY )|U = u, Z = z̈] fU |Z(u|z̈)du

=

∫
Uz
E[α(u, UY )] + E{1{UX ≤ ν(z)}E[β(u, UY )|UX , U = u, Z = z̈]|U = u, Z = z̈}fU |Z(u|z̈)du

=

∫
Uz
E[α(u, UY )] + E{E[1{UX ≤ ν(z)}β(u, UY )|UX ]} fU |Z(u|z̈)du

=

∫
Uz
E[α(u, UY ) + 1{UX ≤ ν(z)}β(u, UY )]fU |Z(u|z̈)du = E[r̄(z, U)|Z = z̈].

By B.2.i(b, c) and absolutely continuity of FU |Z(·|z̈), integration by parts then gives

Bγ(z, z
∗|z∗) =

∫
Uz
r̄(z, u)[fU |Z(u|z∗)− fU |Z(u|z)]du

= r̄(z, u)[FU |Z(u|z∗)− FU |Z(u|z)]
∣∣ū
u
−
∫
Uz

∂

∂u
r̄(z, u)[FU |Z(u|z∗)− FU |Z(u|z)]du,

with u and ū the (possibly infinite) infimum and supremum over Uz. The first term vanishes

and the result obtains since B.2(i.d) gives ∂
∂u
r̄(z, u) = δ̄Y (u; z) for a.e. u.

(i.b) Similarly, condition (11), B.2.i(b, e, f, g), and integration by parts give

RN
W.Z(z, z∗) =

∫
Uz
q̄(u)[fU |Z(u|z∗)− fU |Z(u|z)du = −

∫
Uz
δ̄W (u)[FU |Z(u|z∗)− FU |Z(u|z)]du.

The result then obtains from dividing by RN
X.Z(z, z∗) > 0.

(ii.a) From (i.a), recall that E(Y |Z = z) = E[r̄(z, U)|Z = z]. Using B.2.ii(a, b) to interchange

the derivative and integral, we obtain

RN
Y.Z(z) =

∂

∂z
E[r̄(z, U)|Z = z] =

∂

∂z

∫
Uz
r̄(z, u) fU |Z(u|z)du

=

∫
Uz

∂

∂z
r̄(z, u) fU |Z(u|z)du+

∫
Uz
r̄(z, u)

∂

∂z
fU |Z(u|z) du ≡ T1 + T2,

where the product rule derivatives exist by B.2.ii(c, d, e). In particular, to examine T1 note that

r̄(z, u) ≡ E[r(1{UX ≤ ν(z)}, u, UY )] = E[α(u, UY )] +

∫ ν(z)

−∞
E[β(u, UY )|UX = t]fUX

(t)dt.

B.2.ii(c, d), the Lebesgue differentiation theorem, and the chain rule give

T1 = fUX
(ν(z))

∂

∂z
ν(z)

∫
Uz
E[β(u, UY )|UX = ν(z)]fU |Z(u|z)du = fUX

(ν(z))
∂

∂z
ν(z) β̄(0, 1|ν(z), z),

where we make use of (9) and (10) in the last equality.
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To examine T2, B.2ii(a, e) and B.2(i.c) enable integration by parts which gives:

T2 = r̄(z, u)
∂

∂z
FU |Z(u|z)

∣∣∣∣ū
u

−
∫
Uz

∂

∂u
r̄(z, u)

∂

∂z
FU |Z(u|z)du = −

∫
Uz
δ̄Y (u; z)

∂

∂z
FU |Z(u|z)du,

where we use B.2(i.d) in the last equality.

Dividing RN
Y.Z(z) by RN

X.Z(z) gives the result since, by B.2(ii.c), we have

RN
X.Z(z) ≡ ∂

∂z
E(X|Z = z) =

∂

∂z

∫ ν(z)

−∞
fUX

(t)dt = fUX
(ν(z))

∂

∂z
ν(z) 6= 0.

(ii.b) Similarly, condition (11), B.2.i(f, g), B.2.ii(a, c, e, f), and integration by parts give

RLIV
W.Z (z) =

1

RN
X.Z(z)

∫
Uz
q̄(u)

∂

∂z
fU |Z(u|z)du = − 1

RN
X.Z(z)

∫
Uz
δ̄W (u)

∂

∂z
FU |Z(u|z)du.

Proof of Corollary 6.2: (i) Since δ̄Y (u; z) = d(u, z)δ̄W (u) for a.e. u ∈ Uz, we have:

B(ν(z) < UX ≤ ν(z∗), z∗) = − 1

RN
X.Z(z, z∗)

∫
Uz
d(u, z)δ̄W (u)[FU |Z(u|z∗)− FU |Z(u|z)]du.

Since δ̄W (u)[FU |Z(u|z∗)− FU |Z(u|z)] does not change sign for a.e. u ∈ Uz, and

RWald
W.X|Z(z, z∗) = − 1

RN
X.Z(z, z∗)

∫
Ux
δ̄W (u)[FU |Z(u|z∗)− FU |Z(u|z)]du,

we have that dL(z) ≤ d(u, z) ≤ dH(z) gives

B(ν(z) < UX ≤ ν(z∗), z∗) ∈ {RWald
W.X|Z(z, z∗)d : d ∈ D(z)},

The bounds then follow from β̄(ν(z) < UX ≤ ν(z∗), z∗) = RWald
Y.X|Z(z, z∗) − B(ν(z) < UX ≤

ν(z∗), z∗).

B(D(z)) is sharp since for a given z, z∗ ∈ Z and each b̄(0, 1|ν(z) < VX ≤ ν(z∗), z∗) ∈ B(D(z))

there exist random variables (V, VX , VY , VW ) and functions ν∗, α∗, β∗, r∗, and q∗, such that

Y = r∗(X, V, VY ) = α∗(V, VY ) + β∗(V, VY )X, W = q∗(V, VW ), and X = 1{VX ≤ ν∗(Z)},

that satisfy the conditions in Theorem 6.1 and Corollary 6.2. For this, let VX = UX , ν∗ = ν,

and

d(z) =
1

RWald
W.X|Z(z, z∗)

[RWald
Y.X|Z(z, z∗)− b̄(0, 1|ν(z) < UX ≤ ν(z∗), z∗)]

(recall that if RWald
W.X|Z(z, z∗) = 0 then B(D(z)) is a singleton) so that d(z) ∈ D(z). Further, let

d−1
W and dY (z) be any constants such that d(z) = d−1

W dY (z) (e.g. dW = 1 and dY (z) = d(z)).
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Then it suffices to let r∗1(·) be given by[
r∗1(0)
r∗1(1)

]
≡
[

1− p(z) p(z)
1− p(z∗) p(z∗)

]−1 [
E(Y −Wd(z)|Z = z)
E(Y −Wd(z)|Z = z∗)

]
=

1

p(z∗)− p(z)

[
p(z∗)E(Y −Wd(z)|Z = z)− p(z)E(Y −Wd(z)|Z = z∗)

−(1− p(z∗))E(Y −Wd(z)|Z = z) + (1− p(z))E(Y −Wd(z)|Z = z∗)

]
=

[
E(Y −Wd(z)|Z = z)− p(z)[RWald

Y.X|Z(z, z∗)−RWald
W.X|Z(z, z∗)d(z)]

E(Y −Wd(z)|Z = z) + (1− p(z))[RWald
Y.X|Z(z, z∗)−RWald

W.X|Z(z, z∗)d(z)]

]
,

where p(z) = E(X|Z = z) (the matrix inverse exists since RN
X.Z(z, z∗) > 0), and to define V ,

VY , VW , r∗, and q∗ as follows

Y ≡ r∗1(X) + [E(W |Z)d−1
W ]dY (z) + {Y − r∗1(X)− E(W |Z)d−1

W dY (z)}

≡ r∗1(X) + V dY (z) + VY ≡ r∗(X, V, VY ), and

W ≡ [E(W |Z)d−1
W ]dW + [W − E(W |Z)] ≡ V dW + VW ≡ q∗(V, VW ).

In particular, for z̈ = z, z∗ and v ∈ Vz̈ we have

E[VY |V = v, Z = z̈] = E[Y −Wd(z)− r∗1(X)|Z = z̈]

= E[(1− p(z̈))r∗1(0) + p(z̈)r∗1(1)− r∗1(X)|Z = z̈]

= E[r∗1(0) +X(r∗1(1)− r∗1(0))− r∗1(X)|Z = z̈] = 0,

and E(VW |V = v, Z = z̈) = 0. It follows that, for z̈ = z, z∗ and all v ∈ Vz̈, we have

E[α∗(v, VY )|V = v, Z = z̈] = E[r∗(0, v, VY )|Z = z̈] = r∗1(0) + vdY (z) = E[α∗(v, VY )],

E[β∗(v, VY )|VX , V = v, Z = z̈] = E[r∗(1, v, VY )− r∗(0, v, VY )|VX , Z = z̈]

= r∗1(1)− r∗1(0) = E[β∗(v, VY )|VX ], and

E[q∗(v, VW )|V = v, Z = z̈] = vdW = E[q∗(v, VW )],

and, thus, the analogues of equations (10) and (11) hold. Further, we have

E[r∗(1, V, VY )− r∗(0, V, VY )|ν∗(z) < VX ≤ ν∗(z∗), z∗)] = r∗1(1)− r∗1(0)

= RWald
Y.X|Z(z, z∗)−RWald

W.X|Z(z, z∗)d(z) = b̄(0, 1|ν(z) < UX ≤ ν(z∗), z∗).

Last, E[ ∂
∂v
q∗(v, VW )] = dW does not change sign and FV |Z(v|z̈) is degenerate:

FV |Z(v|z̈) = Pr[E(W |Z = z̈)d−1
W ≤ v|Z = z̈] = H(v − E(W |Z = z̈)d−1

W ),

where H(t)

{
1 if 0 ≤ t
0 if t < 0

is the Heaviside step function, so that FV |Z(v|z)−FV |Z(v|z∗) is either

nonnegative or nonpositive for all v. Here, we view FV |Z(v|z̈) as a limiting case as τ → 0 for
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a sequence F τ
V |Z(v|z̈) that, along with the additively separable functions r∗ and q∗, satisfy the

regularity conditions in B.2 to interchange the order of well defined derivative and integral (see

e.g., Bracewell, 1986).

(ii) The bounds obtain using similar arguments to (i). The sharpness proof constructs

V , VX , VY , VW , ν∗, r∗, and q∗ analogously to (i). In particular, for a given z ∈ Z and

each b̄(0, 1|ν(z), z) ∈ B(D(z)), set d−1
W dY (z) = d(z) = 1

RLIV
W.X|Z(z)

[RLIV
Y.X|Z(z) − b̄(0, 1|ν(z), z)] and

z∗ = z + e. By letting e→ 0 and redefining r∗1(0) and r∗1(1) as the limits, we obtain

b̄(0, 1|ν∗(z), z) = r∗1(1)− r∗1(0)

= lim
e→0

RWald
Y.X|Z(z, z∗)−RWald

W.X|Z(z, z∗)d(z) = RLIV
Y.X|Z(z)−RLIV

W.X|Z(z)d(z).

Here, ∂
∂z
FV |Z(v|z) = −RN

W.Z(z)d−1
W δ(v − E(W |Z = z)d−1

W ) where δ is the Dirac delta function

with an impulse concentrated at E(W |Z = z)d−1
W .

Comment on the Sharpness in Corollary 6.2 under Global Mean Independence:

Consider strengthening the local conditions (10) and (11) in Corollary 6.2 to require the global

conditions:

E[α(u, UY )|U,Z] = E[α(u, UY )], (14)

E[β(u, UY )|UX , U, Z] = E[β(u, UY )|UX ], and

E[q(u, UW )|U,Z] = E[q(u, VW )] for all u ∈ U .

Then, provided the regularity conditions in B.2 can be suitably adjusted so that ν(·) is dif-

ferentiable a.e. and E(X|Z = s) =
∫ ν(s)

−∞ fUX
(t)dt and E(Y −Wd(z)|Z = s) =

∫
Us [r̄(s, u) −

q̄(u)d(z)] fU |Z(u|s)du are absolutely continuous on Z (see e.g. Talvila (2001) for sufficient reg-

ularity conditions), the bounds B(D(z)) in Corollary 6.2 remain sharp. In particular, let VX ,

ν∗, d−1
W , dY (z), V , VW , and q∗ be defined as in the proof of Corollary 6.2. For the Y equation,

let VY ≡ (Y, VX , Z) and define α∗ and β∗ such that

β∗(V, VY ) = β̃(VX) where β̃(ν∗(t)) =

{
∂
∂z
E(Y−Wd(z)|Z=t)

∂
∂z
E(X|Z=t)

if ∂
∂z
E(X|Z = t) 6= 0

0 if ∂
∂z
E(X|Z = t) = 0

, and

Y ≡ β̃(VX)X + [E(W |Z)d−1
W ]dY (z) + {Y − β̃(VX)X − E(W |Z)d(z)}

≡ β∗(V, VY )X + [V dY (z) + α∗1(VY )] ≡ β∗(V, VY )X + α∗(V, VY )

Note that E[α∗1(VY )|Z] = 0 since for all s ∈ Z we have:

E[β̃(VX)X|Z = s] =

∫ ν∗(s)

−∞
β̃(v)fVX (v)dv =

∫ s

−∞
β̃(ν∗(t))fVX (ν∗(t))

∂ν∗(t)

∂t
dt

=

∫ s

−∞

∂
∂z
E(Y −Wd(z)|Z = t)

∂
∂z
E(X|Z = t)

∂

∂z
E(X|Z = t)dt = E(Y −Wd(z)|Z = s).
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It follows that α∗(V, VY ), β∗(V, VY ), and q∗(v, VW ) satisfy the analogue of condition (14) since:

E[α∗(v, VY )|V, Z] = E[vdY (z) + α∗1(VY )|Z] = vdY (z) = E[α∗(v, VY )],

E[β∗(v, VY )|VX , V, Z] = E[β∗(v, VY )|VX ] = β̃(VX) = E[β∗(v, VY )|VX ], and

E[q∗(v, VW )|V, Z] = E[vdW + VW |Z] = vdW = E[q∗(v, VW )].

Further, we have that

E[β∗(V, VY )|ν∗(z) < VX ≤ ν∗(z∗), Z = z∗] =

∫ ν∗(z∗)
ν∗(z)

β̃(t)fVX (t)dt

Pr[ν∗(z) < VX ≤ ν∗(z∗)]
= RWald

Y.X|Z(z, z∗)−RWald
W.X|Z(z, z∗)d(z)

and

E[β∗(V, VY )|VX = ν∗(z), Z = z] = β̃(ν∗(z)) =
∂
∂z
E(Y −Wd(z)|Z = z)

∂
∂z
E(X|Z = z)

= RLIV
Y.X|Z(z)−RLIV

W.X|Z(z)d(z).

We leave a detailed study of the sharpness of B(D(z)) under stronger (mean) independence

conditions to other work.

Proof of Theorem 7.1 Let Q̂ ≡ diag( 1
n

∑n
i=1 H̃iG̃

′
i,

1
n

∑n
i=1 H̃iG̃

′
i) and M̂ ≡ 1

n

∑n
i=1(H̃ ′iεY.G|H,i,

H̃ ′iεW.G|H,i)
′. By (i) and since E(H̃G̃′), and thus Q, is finite and nonsingular, Q̂−1 exists in

probability for all n sufficiently large. The result then obtains from

√
n((R̂′Y.G|H , R̂

′
W.G|H)′ − (R′Y.G|H , R

′
W.G|H)′) = Q̂−1

√
nM̂ = (Q̂−1 −Q−1)

√
nM̂ +Q−1

√
nM̂,

since (i) gives Q̂−1 − Q−1 = op(1) and (ii) gives
√
nM̂

d→N(0,Ξ), with Ξ finite and positive

definite.

Proof of Theorem A.1 (i) By (i.b) we have

Cov(Z, Y |S = s) = Cov(Z,X|S = s)β̄(s) + Cov(Z,U |S = s)δ̄Y (s),

and thus, by (i.a),

RY.X|Z(s) = β̄(s) +RU.X|Z(s)δ̄Y (s).

(ii) By (ii.b) we have

Cov(Z,W |S = s) = Cov(Z,U |S = s)δ̄W (s),

and thus, by (i.a) and (ii.a),

RW.X|Z(s)δ̄(s) = RU.X|Z(s)δ̄Y (s).

Proof of Theorem A.2 (i) By (i.b), we have

Cov(Z, Y ) = Cov(Z,X)β̄ + Cov(Z,U)δ̄Y .
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By (i.c) and (i.a), we have

RY.X|Z = β̄ + Cov(Z,X)−1Cov(Z,U)δ̄Y = β̄ + Cov(Z,X)−1

[
0

Cov(Z2, U)

]
δ̄Y .

(ii) By (ii.b), we have

Cov(Z2, X1) = Cov(Z2, (δ̄
′
X1
U + ηX1)] = Cov(Z2, U)δ̄X1 .

By (ii.a), it follows that

B = Cov(Z,X)−1

[
0

Cov(Z2, X1)

]
δ̄−1
X1
δ̄Y .

Proof of Theorem A.3 (i) By (i.b), we have

Cov(Z, Y ) = Cov(Z,X)β̄ + Cov(Z,U)δ̄Y

and (i.a) gives

RY.X|Z = β̄ +RU.X|Z δ̄Y .

(ii) By (ii.b), we have

Cov(Z2, X1) = Cov(Z2, (δ̄
′
X1
U + ηX1)) = Cov(Z2, U)δ̄X1 ,

and Z1 = X1, (ii.b), and (ii.c) give

Cov(Z1, X2) = δ̄′X1
Cov(U,X2) = δ̄′X1

Cov(U, (δ̄′X2
U + ηX2)) = δ̄′X1

V ar(U)δ̄X2 , and

Cov(Z1, U) = Cov((δ̄′X1
U + ηX1), U) = δ̄′X1

V ar(U).

By (i.a) and (ii.a), we have

B = Cov(Z,X)−1

[
Cov(Z1, X2)δ̄−1

X2
δ̄Y

Cov(Z2, X1)δ̄−1
X1
δ̄Y

]
.

Proof of Corollary A.4 (i) The result follows from the expression for β̄ in Theorem A.3. (ii)

The result obtains from substituting for U ′ = (X ′1 − η′X1
)δ̄−1
X1

in the Y equation. (iii) Recall

that Cov(Z,X)−1 is given by (e.g. Baltagi, 1999, p. 185):

Cov(Z,X)−1 =

[
Cov(Z1, X1), Cov(Z1, X2,3)
Cov(Z2, X1), Cov(Z2, X2,3)

]−1

=

[
P−1

1 , −RX2,3.X1|Z1P
−1
2

−RX1.X2,3|Z2P
−1
1 , P−1

2

]
,

where

P1 ≡ Cov(Z1, X1)− Cov(Z1, X2,3)Cov(Z2, X2,3)−1Cov(Z2, X1) = Cov(εZ1.Z2|X2,3 , X1)

P2 ≡ Cov(Z2, X2,3)− Cov(Z2, X1)Cov(Z1, X1)−1Cov(Z1X2,3) = Cov(εZ2.Z1|X1 , X2,3).
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The result then follows from

B =

[
P−1

1 Cov(Z1, X2)δ̄2 −RX2,3.X1|Z1P
−1
2 Cov(Z2, X1)δ̄1

−RX1.X2,3|Z2P
−1
1 Cov(Z1, X2)δ̄2 + P−1

2 Cov(Z2, X1)δ̄1

]
.

Proof of Theorem A.5 (i.a) By conditions B.1(i.a), (6a), and the proof of Theorem 5.1, we

have that:

r̄(x, U) = E[r̈(x, UY )] + U ′δ̄Y

and

B(x, x∗) = E[r̄(x, U)|X = x∗]− E[r̄(x, U)|X = x] = RN
U.X(x, x∗)δ̄Y .

(i.b) Similarly, by conditions B.1(i.e) and (7), q̄(U) = ᾱ′W + U ′δ̄W and

RN
W.X(x, x∗) = E[q̄(U)|X = x∗]− E[q̄(U)|X = x] = RN

U.X(x, x∗)δ̄W ,

and thus, by (i.b.1),

RN
W.X(x, x∗)δ̄ = RN

U.X(x, x∗)δ̄Y .

(ii.a) By (ii.a.2), ∂
∂x
E[r̈(x, UY )] = E[ ∂

∂x
r̈(x, UY )] (see e.g. Corbae, Stinchcombe, and Zeman

(2009, Theorem 7.5.17) or Bartle (1966, corollary 5.9)). Then (i.a) and (ii.a.1) yield

RN
Y.X(x) =

∂

∂x
E[r̄(x, U)|X = x] = β̄(x) +RN

U.X(x)δ̄Y .

(ii.b) By (i.b) and (ii.a.1), we have

RN
W.X(x)δ̄ = RN

U.X(x)δ̄Y .

Proof of Theorem A.6: (i.a) By conditions B.2(i.a), (9,10), and the proof of Theorem 6.1,

we have that

r̄(z, U) = E[r̈(0, UY )] + U ′δ̄Y + E[1{UX ≤ ν(z)}[r̈(1, UY )− r̈(0, UY )]].

and, since RN
X.Z(z, z∗) = Pr[ν(z) < UX ≤ ν(z∗)] > 0,

B(ν(z) < UX ≤ ν(z∗)) =
Bγ(z, z

∗|z∗)
RN
X.Z(z, z∗)

=
E[r̄(z, U)|Z = z∗]− E[r̄(z, U)|Z = z]

RN
X.Z(z, z∗)

= RWald
U.X|Z(z, z∗)δ̄Y .

(i.b) Similarly, by conditions B.2(i.e) and (11), we have q̄(U) = ᾱ′W + U ′δ̄W and

RWald
W.X|Z(z, z∗) =

RN
W.Z(z, z∗)

RN
X.Z(z, z∗)

=
E[q̄(U)|Z = z∗]− E[q̄(U)|Z = z]

RN
X.Z(z, z∗)

= RWald
U.X|Z(z, z∗)δ̄W ,

and thus, by (i.b.1),

RWald
W.X|Z(z, z∗)δ̄ = RWald

U.X|Z(z, z∗)δ̄Y .
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(ii.a) To characterize β̄(ν(z)), note that by (ii.a.1)

RN
Y.Z(z) =

∂

∂z
E[r̄(z, U)|Z = z] =

∂

∂z
E[1{UX ≤ ν(z)}[r̈(1, UY )− r̈(0, UY )]] +RN

U.Z(z)δ̄Y

The result obtains, after division by RN
X.Z(z) > 0, since (ii.a.2) and arguments similar to the

proof of Theorem 6.1(ii.a) give

∂

∂z
E[1{UX ≤ ν(z)}[r̈(1, UY )− r̈(0, UY )]] = β̄(ν(z))×RN

X.Z(z).

(ii.b) The result obtains, after division by RN
X.Z(z) 6= 0, since (i.b) and (ii.a.1) give

RN
W.Z(z)δ̄ = RN

U.Z(z)δ̄Y .

Proof of Theorem A.7: (i.a) From the proof of Theorem 5.1, condition (6a) gives

B(x, x∗|x∗, s) = E[r̄(x, U)|X = x∗]− E[r̄(x, U)|X = x].

The expression for B(x, x∗|x∗, s) follows since for ẍ = x, x∗:

E[r̄(x, U)|X = ẍ] =
L∑
h=0

r̄(x, uh)fU |X(uh|ẍ)

= r̄(x, u0)[1−
L∑
h=1

fU |X(uh|ẍ)] +
L∑
h=1

r̄(x, uh)fU |X(uh|ẍ)

= r̄(x, u0) +
L∑
h=1

fU |X(uh|ẍ)[r̄(x, uh)− r̄(x, u0)]

= r̄(x, u0) +
L∑
h=1

fU |X(uh|ẍ)[
h∑
g=1

r̄(x, ug)− r̄(x, ug−1)]

= r̄(x, u0) +
L∑
g=1

[r̄(x, ug)− r̄(x, ug−1)]
L∑
h=g

fU |X(uh|ẍ)

= r̄(x, u0) +
L∑
g=1

[r̄(x, ug)− r̄(x, ug−1)][1− FU |X(ug−1|ẍ)].

(i.b) A similar derivation gives the expression for RN
W |X(x, x∗|x∗).

(ii.a) From the proof of Theorem 5.1, condition (6a) gives

RN
Y.X(x) =

∂

∂x
E[r(x, U, UY )|X = x] =

∂

∂x
E[r̄(x, U)|X = x].

Since ∂
∂x
r̄(x, ug) (by B.1(ii.c)) and ∂

∂x
fU |X(ug|x) exist and are finite for all ug ∈ {u0, u1, ..., uL},

RN
Y.X(x) =

L∑
g=0

[
∂

∂x
r̄(x, ug)]fU |X(ug|x) +

L∑
g=0

r̄(x, ug)[
∂

∂x
fU |X(ug|x)] = β̄(x|x) +B(x|x),
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where the last equality makes use of conditions B.1(ii.c) and (6b). Further,

B(x|x) =
L∑
h=0

r̄(x, uh)
∂

∂x
fU |X(uh|x)

= r̄(x, u0)
∂

∂x
[1−

L∑
h=1

fU |X(uh|x)] +
L∑
h=1

r̄(x, uh)
∂

∂x
fU |X(uh|x)

=
L∑
h=1

∂

∂x
fU |X(uh|x)[r̄(x, uh)− r̄(x, u0)]

=
L∑
h=1

∂

∂x
fU |X(uh|x)[

h∑
g=1

r̄(x, ug)− r̄(x, ug−1)]

=
L∑
g=1

[r̄(x, ug)− r̄(x, ug−1)]
L∑
h=g

∂

∂x
fU |X(uh|x)

= −
L∑
g=1

δ̄Y (ug−1, ug;x)
∂

∂x
FU |X(ug−1|x).

(ii.b) A similar derivation gives the expression for RN
W |X(x|x).
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