Supplementary Material for “Local Indirect Least Squares and Average Marginal
Effects in Nonseparable Structural Systems,”

by Schennach, S. M., H. White, and K. Chalak.

Proof of Lemma 3.1.  This result holds by construction, using integration by parts under

Assumption 3.3. m

Lemma A.5 Suppose Assumption 3.4 holds. Then sup,cp ‘k:o‘) (2)| < o0, [ |k‘(”\) (z)|dz < oo,
0< []&® (z)‘de < oo, [ kW (z)‘2+6 dz < 00, and |z| [k (2)| — 0 as [2] — occ.

Proof. The Fourier transform of k™ (2) is (—i¢)* & (¢), which is bounded by assumption and there-
fore absolutely integrable, given the assumed compact support of « (¢). Hence kO (z) is bounded,
since [k (2)] = ‘f (—iO) & (€) e*iCng‘ < [¢I* |5 (¢)| d¢ < oo. Note that [ | (z)|2dz > 0 un-
less kM (2) = 0 for all z € R, which would imply that k (z) is a polynomial, making it impossible
to satisfy [ k(z)dz = 1. Hence, [ ‘ko‘) (z)}2 dz > 0.

The Fourier transform of 22k™) (2) is —(d?/d¢?) ((—1{))‘/{(()) By the compact support
of (), if x(¢) has two bounded derivatives then so does (—i¢)*x(¢), and it follows that
—(d?/d¢?) ((—ig k(¢ )) is absolutely integrable. By the Riemann-Lebesgue Lemma, the inverse
Fourier transform of i(d?/d¢?) ((—ig)% (()) is such that z2k™ (2) — 0 as |z| — oo. Hence, we
know that there exists C such that

C

‘k()\) (z)‘ < Tk

and the function on the right-hand side satisfies all the remaining properties stated in the lemma.

Proof of Theorem 3.2. (i) The order of magnitude of the bias is derived in the proof of Theorem
4.4 in the foregoing appendix. The convergence rate of By ) (z,h) is also derived in Theorem 4.4.

(¢1) The facts that E'[Ly ) (2,h)] =0and E [L%/,)\ (z, h)] =n"1Qy (2, h) hold by construction.
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Next, Assumptions 3.2(7¢) and 3.4 ensure that
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(by Assumption 3.2(i¢) and Jensen’s inequality)
. 2
1/h—1 <k<A> (z ; "’)) fz(2)dz
2
! / (W) (u)) fz (2 + hu) du

(after a change of variable from Z to z + hu)
2
1/ (k:()‘) (u)) du  (by Assumption 3.1(z)

! (by Lemma A.5)

'E

sup Qyy (z,h) = O (h_’\_l/z) )
z€R

We now establish the uniform convergence rate. Using Parseval’s identity, we have

Lya(z.h) = E [(—m h AV EWY (Z_zﬂ ~E [(—1)A h AV EW <Zh_z>]
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so it follows that

and that
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Hence, by the Markov inequality,

sup |Ly (z,h)| = O, (n—1/2h_/\_1> .
z€R

When h,, — 0, lemma 1 in the appendix of Pagan and Ullah (1999, p.362) applies to yield:
2
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By Assumptions 3.1 and 3.2(iii), E [V?|Z = z] fz (z) > 0 for z € Sz and 3.4 ensures [ (k™) (z))2 dz >
0 by Lemma A.5, so that h22*1Qy (2, hy,) > 0 for all n sufficiently large.

(¢43) To show asymptotic normality, we verify that fy ) (2, h,;V, Z) satisfies the hypotheses
of the Lindeberg-Feller Central Limit Theorem for IID triangular arrays (indexed by n). The

Lindeberg condition is: For all € > 0,
nh_)n(r)lo Qn b, (2,6) =0,
where
Quin (2,2) = (Qua (2,0) 7 B [1 (1tva (2,15 V. 2)| = & Qi (2, )20 2) Jevx (2,5 V, 2) ).
Using the inequality F [1 (W > n] Wz] <nE [W2+5] for any § > 0, we have
Qu(2:8) < (wa (2,0) " (= (Qwa (2,07 n1/2)_5 E [[tva (2,1 V. 2)PH] |

where Assumption 3.2(iv) ensures that
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The results above and Assumption 3.2(iv) ensure that for any given z there exist 0 < A; ;, Az , < 00
such that Al,zh;”‘_l < Qya(z,hy) < A27zh;2>‘_1 for all h,, sufficiently small. Hence, we have

N -5 h;)\(2+5)h;1_5
Qua (2:8) = (st 2n2) B

_ (Ehﬁ)‘_lﬂnlﬂhﬁhn) -5
= g7 (nhn)_6/2 -0
provided nh,, — oo, which is implied by Assumption 3.6: h, — 0, nh%’\Jrl —00. W

Proof of Theorem 3.3. The O (Hgvjw — GV A Hio> remainder in eq.(15) can be dealt with as

in the proof above of Theorem 4.9. Next, we note that

[5G @a o) = qva () ds = L+ By + R,
where
L = BV <><Z>] BV (2)| = B[ty (s:V. 2)]
By, = / (gvr (2, h) = gva (2)) dz
Ry, = / s(2) (Gvr (2, h) — gua (2, h)) dz — (E [vs@) (Z)} —E[Vs(’\) (Z)D.

We then have, by Assumption 3.7,

B| = \/ ) v (o) = gva () 2| < [ 15 ) lova () = g (2)

N /’8(2)’ [Bva (2, hn) |dz = Op ”71/2 /S(z) dz = o, (n71/2> .

Next,
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where

SO (2, 1) = / O (2) 1k (5 - ) i

and where the boundary term B from the integration by parts satisfies
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=1 p=-1,

because at any given h,, we have lim‘zboo max;—1,..\,—1 ‘sgl) (z)‘ = 0 by assumption while the
expectations and estimated expectations are bounded since |h,, =Dz -2)/ hy)| is bounded
(by Lemma A.5) and so is E'[|V||Z = z] by Assumption 3.2.

Hence, Ry, = o, (nfl/ 2), because it is a zero-mean sample average where the variance of
each individual IID term can be shown to go to zero as h, — 0 as follows. Lemma A.5 and
the assumed uniform continuity of sV (z) imply, by Lemma 1 in Pagan & Ullah (1999), that
s (2, hy)—sW (2) — 0 uniformly in z € R as h,, — 0. Let &, = sup,cp ’So‘) (2, hy) — 5P (z)} — 0,
we then have

Var [V (s()‘) (Z, hy) — s (Z))} < &2 Var[V] — 0.

Proof of Theorem 3.4. This proof is virtually identical to the proof of Theorem 4.10 in
the foregoing appendix, with &, = (h;l)%’B exp (043 (hgl)’BB) + n1/2 (h,:l)2 instead of ¢, =
(hgl)’h,B exp (aB (h#)BB) 112 (h;1)vl,L exp (aL (h#)BL). -

Proof of Theorem 3.5. This proof is virtually identical to the proof of Theorem 4.11, invoking
Theorem 3.2 instead of Corollary 4.8. m





