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A.1 Restricting the Correlations among the Disturbances

We extend Ag to Af which restricts the sign and/or magnitude of the correlation T ih

between n; and np,.

Assumption Ag Disturbance Correlation Restriction: Cin < Ty < G where —1 < Cin <

¢in <1 forjh=1,...pand j < h.

In particular, provided Jé_a%h = 0, from the proof of Corollary |A.1| we have that
J
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A§ may restrict the sign of r,, ,, as encoded by the sign of the function

Sin(r) =1 X Ty Y~ WY TW

/ ' : - 2 2 2 2
Further, A§ may restrict the magnitude of 7, ,, (either r; < c*orc¢* <r, ) as encoded

by the sign of the function

Mp(r;c) = (r x Ty ¥~ WY

As shown in the proof of Corollary |A.1}, when R

function M;,(+; ¢) is given by

Ajh(C) = Cz[R%/,(%,)?h)’<]‘ — R%Yh)Q — (]. — C2)<R%/.~j — R%/.Yh>2]’
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and, when R%/,-Yh # ¢, the roots of M, (+;c) are given by

Fyn(e) = Ajn(e)? Fjn(e) + Ajp(c)?
and  pf (c) = —2 2
Q(R%Yh —?) Jh 2(R§~/jyh —2)

pin(c) =

where
_ P2 2 2\ ( P2 2
Corollary uses Sjp(r) and M,,(r;c) to encode the sign and magnitudes restrictions in

Aj and to express the identification region for (p, d, 5,1") under A;-A§,.

Corollary A.1 Under the conditions of Theorem Ay, As, and A,6 forj,h=1,....p with
Jj <h, (p,d,p,T) is partially identified in the sharp set

2
1 oy
jkmc = {(T,D(T),B(T),G(T)) 0= G(T), — <r<1 2YJ (1 - Tj) < ij(?“),
I1+k o
G‘h(r) _ . .
and ¢, < J = <G forj,h=1,....pand j < h}.
" GG T }

Further, p is partially identified in the sharp set

1 1 -
k,rc _ 2 2 :
RIS = [Riy 5,110 [ 1 0y [T—jRVv.ffj?l] ﬂ Rin
o
with
[ Sn(r) <0 and M(r;cp) <0< Myn(rin)  if ¢ < €n <0 and U?V'U’%@ #0 ]
J
{Sin(r) <0 and M;p(r;c;y) < 0} or ' C; 203
c U0 C () and A Y < 0) if ¢ <0 < and 03 0% #0
ih =T 0 Si(r) and Myy(r;en) <0< Myp(ricy,)  if 0 < c;, < € and a%af?h #0
ref if 0 & [cjn, Cjn] and 0127-0327h = 0.
J
| —00 < 7 < 00 if 0 € [¢jn, Cin] and 0327]-012@ =0 y

where, provided 0% 0% # 0, we have
J h
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—I—" <71 when0<ry y
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0< th(r) & "W Y, WY, <0 when Y Y, = 0

o T,
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when ro < <0
T)_/j!{/h ifjvyh



and if R%.Y/h =1 then 0 < My(r;c) = (1 — ) (r — RI2/T/.17]-)2 whereas if R%Yh # 1 then

0 < Mjp(r;c) &

Last, §, B3, and U are partially identified in the sharp sets D¢ = {D(r) : r € RP™¢},
BT = {B(r) : r € RF™}, and GF™¢ = {G(r) : r € RFT}.

The bounds in Corollary correspond to those in Corollaries|3.2 and 3.3 when (c;;,, Cjn)
is set to (—1,0), (0,1), (0,0), or (=1, 1). In particular, when R;Yh = 0, the proof of Corollary

[AT] gives

"wy,"wy, Owy,ow.y,

£3.(0) = p5,(0) = - ,
" " Y, Y O-%/O-?j»?h
so that 0 < M (p;0) < p € (—00,00) and M, (p;0) <0< p= M Also,

WUY Y,

pin(=1) = p(1) = RIZ/V@,Y/,L)/ and P;rh(_l) = Pjh(l) = 0.

Thus, when Rf, v, < L Mjn(p;1) = Mj(p;=1) < 0 & p € (00,0l U [Riv(y 7,y 09)-
Since R‘Q;V‘ ¥, Yh y S R‘?}V 7+ this magnitude restriction is not binding in RET< Tt follows that

Corollary [A.1] yields the same bound R¥7¢ from Corollary , with R, determined by
the magnitude restriction encoded in Mj,(p;0) < 0 when ¢j, = ¢ = 0 and by the sign

restrictions, if any, encoded in Sj,(r) otherwise.

A.2 Relaxing the Classical Measurement Error Assumption

Assume A; and A, and consider removing the classical measurement error assumption As

to allow € to be correlated with U or n:

=Ud0+n and W =U-+¢e where Cov(U,n)=0.

( RL - ,(1—R2~. ~ )2
—00 <71 < 00 when 0 < 2 < 1 — ——y W Yidh
", R )
WY, WY,
4 o (1—R2~ _ )2
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W.Yj W.Yy J
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r < when ¢ = R2 andR < R% . + R% .
e PR Y ( +R€V 7, ) V.Y, (YY) W.Y; W.Yp
2 o3 2 _ P2 2 _p2 2
0<(1-RY )RWY RE 5 when ¢ RY v, and RW.(Yj,Yh)/ RW.YJ, + Ry o
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r € [p}i(c), p(c)] when R%Yh <c



Here, we dispense with X for simplicity - if Cov[X, (e,1)'] = 0 then the analysis proceeds
analogously after projecting on X. We can express the moments in Var[(Y',W)'| by

oy =0t + 02 + 200, owy = 040 + oy + oy, and oy = 80j6+ o
Let W and U be nondegenerate. Dividing the first equation by 0 < 0%, gives
o 2 -

U, g
25 where p, = —2U and p. =
ow Ty

1=py+p:+2
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Further, normalizing the second and third moments by ¢%,, defining ( = % and [' = ;T”,
w w

and substituting for (;Z’E = %(1 — pu — pe) gives the nonlinear system of equations
w
oWy 1 0'12/ /
byw=-—F%—=pud+5(1=pu—p:)0+¢ and —-=0dp,0+T,
of 2 Oy

where the dimension of the unknowns (py, pe, ¢, 9, ') exceeds the number of equations. The
system’s unknowns must also obey that Var[(U,e,n')] is positive semi-definite. Nevertheless,
without additional assumptions, these restrictions do not identify the elements of 4. This
holds even if n and € are assumed to be uncorrelated so that ( = ‘;L%VE =0.

In particular, if { = ZL%VE = 0 then (we let 1+p, # p. - otherwise, by = 3(1+p,—p.)0 = 0
does not help identify 0)

2
=D L) = b d
0 (Pu, =) 1+ pu—p. y.w an
o3 4p
D= Glpup)=2 - Py b
(7o) or  (T4p,—p)2 WY
Further, since 0, = 0, Var[(U,e,n)] is block-diagonal and therefore 0 < Var[(U,e,n)] if

and only if 0 < Var[(U,e)'] and 0 < Var(n). The first constraint 0 < Var[(U, )] holds if

and only if (where we use 07 . < 0%0?)

1
0 < Pus 0 < Pes and Z(l = Pu — 05)2 < PuPe-

Further, since (recall that we let 0 < p,,)

1 u_82 1_u_€2 41_&u 4ua 41_5u
o< Utou=pe)” (A =puzp)” ML= pelou  Apupe A0 = po)p

4py, 4p, 4py — dp, 4py

=1,

it follows from the proof of Corollary that the second constraint I' = ;T?’ > 0 holds if

w
and only if
(1"—0“—,05)2 _ (1+,0u—P5)2 1

— < 1.
4py

R% . < <
wy 2 Pu




Clearly, by, w = 0 if and only if §; = 0. However, more generally, these constraints fail
to bound 0;. In particular, for any value d € R\{0} for ¢; there exists a value (r,,7.) for

(pus pe) such that d = D;(r,,r.) and the constraints on (py, p-) in 0 < Var[(U,e,n")] hold.

Specifically, let r = ébyj_w and set (r,,r.) such that r? <r, < 2 andr. =147, —2r.

Riy.y
Then Dj(ry,r:) by, w = by, w = d. Further, the 0 < Var[(U,¢)'] constraint holds
since 0 < 72 < r, and

= T¥re—re

re=14+7r,—2r>14+7>=2r=(1-7r)>>0, and

1 1
rurs_Z(l_ru_Ts)z:Tu(l—i_ru_zr)_Z[l—ru_(1+ru—2r)]2:TU—T220.

2
Last, the I' = :é"/ > 0 constraint holds since R%, < 5 = (H“T_”)Qi <1.

This paper’s analysis maintains the classical measurement error assumption Ajz. In this

case, ¢ = 2% = 0 and % = 0 and thus p. = 1 — p,. This reduces the dimension of
w w
2
the unknown parameters in the equations for Z%* and ZTY by p + 1, from (py, pe, ¢, 6,T)

w w

to (pu,0,I'), and yields two-sided bounds for the elements of §. It is of interest to derive
analytical expressions for the sharp identification regions for p,, p., ¢, J, I' and 8 without
As under restrictions analogous to A4-Ag. To keep the scope of the paper manageable, we

leave tackling this problem in more detail to other work.

B Supplementary Material on Inference

B.1 Algorithm for Inference on p

In order to apply only one algorithm that delivers p!(A; 1—aa1), p4(A; 1—a), and CI7_,, (M),

it is useful to adopt the following notation. For r € [0, 1], we let

g (m;r N) = (gh(m;m, A, ooy ghy (57, X)) where g (m;7,0) =7 — pL () for v =1,..., M, and
gt (myr, N) = (g7 (mm, A)y ooy gy (w3, N)) where gy (w571, A) = py(A) —r forv=1,..., M.

Thus, pl(\) = —g.(m;0,)) an pe(A) = g*(m;0,\). Further, we collect all the lower and
upper bounds, denoted by gS(m;r, A) for v = 1,...,2M, into

g (mym, ) = (g (mm, A, g (mm A)'Y .

2We employ ¢'(m;0,\) to transform a lower bound for p into an upper bounds for —p. We then use a
single algorithm (for an upper bound) when estimating the lower and upper bounds for p.




We estimate ¢°(m;7, A) using the consistent plug-in estimator ¢g°(7;r, A). Using the delta
method, the linearly independent subset g¢(7;7, A) of g°(7;7r, A) (recall that some of bounds
in g°(m; r, \) are constant or linearly dependent, e.g. in the single equation case or under the

diagonal variance restriction in Ag) is asymptotically normally distributed:
V(g (5, A) = g (57, A)) SN (0, Vg (37, VSV gl (7, M),

Note that V,g°(m;r,A) does not depend on r. Section B.2 collects the expressions for
g¢(m;r, A), and V,g¢(m;r, \).

Next, for each ¢ € Ay_,,,, we implement algorithm 1 in Chernozhukov, Lee, and Rosen
(2013). To compute, CI{_, (£), we invert a test statistic and perform a grid search over
(0,1]. For a thorough discussion of the algorithmﬂ, we refer the reader to Chernozhukov,
Lee, and Rosen (2013) and Chernozhukov, Kim, Lee, and Rosen (2015).

L Leta<landve=Viuve={1,..,M}U{M+1,..,2M}.

If the target output is:
(a) pL(6;1 —a) or p¥(f;1 — ) then set m = or u and r = 0.
(b) CIV_(¢) then set m = ¢ and r € (0, 1].
2. Set ¥ =1— . Simulate S draws Zi, .., Zs from N(0, Loar).

3. Foreachv € V°, computﬂ(v;ﬁ) =v=1),...,1(v = 2M)|[VHg(7: 1, )5V g° (75 7, 0)'] 2
‘B(U;E) ‘

4. Define V" = {v € V™ : se(v; £) # 0}. Compute

and set se(v; ) = \/Lﬁ

cym (35 ¢) = A-quantile of { sup

veV

MOB2s o _1,..,5)

h(v; ) Z,
h(v; €)

and

V= {v € VI': g (#:0,6) < min[gl" (750, ) + cym (5; )se(v; )] + 2eym (3; £) se(v; )}

veVy

3We adjust the algorithm in Chernozhukov, Lee, and Rosen (2013) slightly since some of our bounds are
deterministic (e.g p < 1). Specifically, we use the estimated bounds to calculate the critical value. Then we
report the smallest upper bound among the precision-corrected estimators and the deterministic bounds.

AV g¢ (757, E)flvﬁgc(fr; r, )" may be positive semi-definite and its matrix square root is computed using
a singular value decomposition.



5. Compute

heiOZs oy sy
h(v; ()

cpm () = (1 — a)-quantile of { sup

veYm

BU;KZ
v

6. Compute

gy (w57, 0) = nf (g7 (757, 0)) + cpm (£)se(v; 0)]
vepym

If m =1 or u then report
po(l;1—a) = —gi(1:0,6)  or  py(61—a)=gy(#;0,0)
Otherwise, if m = ¢ then report

cry_,(0)={re (0,1]: g5(m;r, £) > 0}.

In the single equation bounds or when Ag is not in force, the value ¢ of the nuisance
parameters does not affect the bounds. Otherwise, let ¢ = 1,...,T enumerate the T" =
%p(p— 1) (¢, he) pairs, ji, by = 1, ..., p with j; < hy, that correspond to the first 7' components
of A\. From Corollary we have that if £ is such that (c;,p,,, Cjon,) # (—=1,1), sgn(—lry+) ¢

C

[Cjune> Ciene); and £; = 0 then (¢) = 0. As such, we drop these ¢ values from A;_,,, since

Jtht
they have no effect on CR]_,, = ) AU CI7?_,, (). For the remaining values of £ in A_q,,,
€ 1—0¢22
CI7_,,, (£) depends only on the signs (negative, zero, or positive) of the first 7" components

of 2T£ v To speed up the computation, we remove from A;_,,, the values that are redundant,
X
so that each admissible sign configuration of the first 7" components of ¢ is represented only

oncein |J CIY .. (£).

1—as2
ZEAl—a22

B.2 Delta Method

Recall that the nuisance parameters A = g¢*(m), the vector of lower and upper bounds
g5(m;r, A) in the intersection bounds algorithm for inference on p, and the parameters J;,
Bji, and Iy, j,h = 1,..,p and | = 1,..., k, (written in the form § = H(m;p)) can all be

expressed as functions of the vector of estimands

’ / ’

;o / / 4 4
IWBZ( T, Ty o, Ty o, Ty, Ty, TG, Tp o)
x Ixp(k+1) 1x(p+k) 1xp(l+k) Ixpk 1xk 1xp 1xLlp(p—1)
/ / / / /
= [vec(by.ow,xry)'s bw. v xrys (bI/V.(Yl,X’)’a e bW(Yp,X’)’)7UeC(bY-X) ’
/ 2/ 2 2 Y 2
WX 05 (05’1’ ey U?p), o5 (UYl,ng . Uf/p_l,ffp)]'



Since the plug-in estimator 7 satisfies /n(7 — W)iN (0,%), the delta method gives

~

V(A = N)SN(0, Vg () BV (1)),
Va(ge(#5m, A) = g5(m5 7, A)) SN (0, Vgl (7, \) SV g (57, A)'), and
Vi(H (#:7) — H(m; )3 N(0, Vo H (m: 1) SV H (1)),

for any 7 € (0,1]. In what follows, we provide expressions for ¢g*, V. g (w), g°(m;7,\),

Veg(m;r, N), H(m;r) and V. H(m;7).
B.2.1 Nuisance Parameters

The 27 = p(p — 1) nuisance parameters are collected in

A= (Ag, - ,)\2T)I = g)‘<7T) = (0"}/201717172, ey 0"}/201}17_1’%, bffl.be/z.W7 ey b?p_l.be/p.Wy'

It follows that, for t = 1,...,T, the components of V,¢*(7) are given by

p(p—1)xB
A 7
legxtéﬁ) = [ Ix[p(k+1)+(p+k)+p(1+k)+pk-+k-+p] 1X%p€p,1) ] )
where n is the unit vector with 1 in the ¢*" position and 0 elsewhere, and for ¢ =
ip(p—1)x1
T+1,..,2T
) = z"®[b?W 0}+z’®[by,w } 0
V”fitB(W) [ 1%p ok R TR k) (k) b b Sp(o- 1)

B.2.2 Lower and Upper Intersection bounds

Consider the joint equation bounds with A = ¢* with (c;,;,,¢j,n,) € {(=1,0),(0,1)} and
sgn(l;) € [¢j,n,> Cion,)\{0} for t = 1,..., T In this case, we have ¢°(m; 7, ) = (¢'(m; 7, ), g* (w7, N)')'
with ]
T [ 1—7 ]
r— LR2 _ 1—r
1—r

l . *\ — = R4 ul . *\
g (myr ") = e and g"(m;r, %) = 1
Mx1 by by, Mx1 r




where M =2+ p+ T (recall T = 1p(p — 1)) and

hS]

2 2
Ry g =bywhwy = ) bviowxyabwor xyn and Ry o = by by v = by, wxryabw. v xoya
h=1

The components (for v =1,...,2M) of V,g¢°(m;r, £*) are then given by
2Mx B

1. Forv=1

Vagi(mr ) = [ hot th © | Thwrxyn 19k} [ by 2 ] 0 }

1x
1xB 1xp P

2. for v =2,

Vrgs(myr, ) =0,
1xB

3. forv=2+jand j=1,....p

Lhy 5 g
V)= [ p e[t L] L0, e[t L] o]

1xB Ixp
4. forv=2+p+tandt=1,...,T,

Vo b (msr 0) 0 Vmgfj(w;r,ﬁ*)}

ngvl(fjgﬁf ) - |: 1xp(k+1) 1><%p(p—1)

where

Vi go(m5m, 0) = Vi (r = —25——)

Lxp(k-+1) Ty 0%, Vi,
— (25~ - \lpo —by w0 ! —by 5 0
- <0W Uth:Yht) {zjt ® [ Ve W 2k } + th, @ [ Yie W' 1k }
1xp 1xp
and

l * bf/)twb{/hzw / th'Wbi/ht'W

V(i ) = Ve = 25 7705) = 4 © o

1><%p(p71) W }/jtvyht IxT W ijt7Yht

5. forv=24p+T+1,..,22+p+T)

Vego(mr £*) =0
1xB
Above, we set A\ = £* where (c;,;,,Cjn.) € {(—1,0),(0,1)} and sgn(€;) € [cj,n,» Cjon,]\10}
fort = 1,..,T = 3p(p — 1). More generally, we consider an arbitrary ¢ € Aj_,,, and

define the matrix 2MP2M (M =2+ p+T) to operationalize how the nuisance parameters A
X



determines whether R, contains an upper bound, lower bound, neither, or both according
to Corollary (recall that we have already dropped from A;_,,, the values ¢ such that
RS, () = 0). In particular, let

g (m;r l) = Pg®(m;r, (%) and  V,¢°(m;r l) = PV g°(m;r, %)
2M x1 2M x 1 2Mx B 2M x B

where we set the v"* row P, of P as follows, for t =1, ..., %p(p —1):

1. Set P= I .
2M x2M
2. If (¢j,n,>Ciun,) = (0,0) and £; # 0 then change Pyry(24pre) t0 —t21pys-

3. If (¢n, Cirn) € {(=1,0),(0,1)} and sgn(l:) & [cj,n,,Cjn,] then change (a) Poypis to

i+ @+p+) a0d (b)) Parsapre) 10 —to4pir.

4. If (thht76jtht) € {(_1:0)7 (07 1)} and Sgn(gt) € [thht76jtht]\{0} then keep (a) P2+p+t as

124 p+t and (b) PM+(2+p+t) as ZM+(2+p+t)-

5. Otherwise, change Payp s t0 ta14(24p+1)-
Moreover, for the j** single equation bounds, P mutes the irrelevant bounds as follows:
1. Change P; to 2p/4(24p+1)
2. For h=1,...,p, if h # j then change Psyj, t0 1ar4(24pth)
3. Fort =1,...,ip(p — 1), change Poipis t0 tars(2pse)-
B.2.3 4, Bj;, and Ty,

Letting 7 enter explicitly in D;, we have that, for j =1, ..., p,

d; = Dj(myr) =

S |-

' 1
by, w  and ViDj(m;r) = { Gy @ [ r 19k] 0 } :

1xB Ixp
Similarly, for j = 1,...,p and | =1, ..., k, we have that

1
le = B]l(ﬂ‘, 7”) = ij-X,l — bWX,l;bifjW and

ViBj(r) = { 5 ® [ b 19k] 0 0 ey —4@byy 0

J J
1B 1xp Ix(ptk)  Ixp(k+1) 15, Ixk  1xk 1x$p(p+1)

10

|



Last, for j,h =1, ...,p and j < h, I'j;, is given by:

— . . = -2 ~ o~ ~ ~ _h~ ~

-2

Letting z’( i) take the value 1 at the entry (j,h) corresponding to 0

1x%p@+1)

oy v,» we have

VaGin(mir) =

1xB

gel e S ]sgel e S0 g
Joint Confidence Regions We sometimes construct a confidence region for the vector of
parameters 5, = (S, ..., Bx) associated with the variable X in the system of Y equations.
First, we construct a 1 — o, confidence region CR{_,, for p € RF™¢. For each r € CRY_,,,
the delta method gives the asymptotic distribution of the plug-in estimator B.,(7;r) for

By(m;r) =byx, — bWXJ%bY.W. Specifically, we have that
Vn(B.(7;r) — By(m; r))gN(O, Yp,(r)) where X, (r) = V, B(m;r) SV By(m; 1)

and V,B,(m;r) stacks the expressions V,Bj(m;r) for j = 1,...,p derived above. We con-
pxXB 1xB

struct a 1 — «; confidence region C’R?jal(r) for B,(m;r), by inverting the following Wald

statistic which has an asymptotic X?, distribution:
CRY, (1) = {bs € By : V/n(Ba(7;1) — by) S5t (r)Vn(Ba(#;7) — ba) < q1—ay }-

Here, ¢1_q, is the 1 — a; quantile of X;% and we perform a grid search over an initial neigh-
borhood Bj. For instance, we let B be a cube that contains each of the p unidimensional
1 — oy confidence regions (e.g. ¢ = 1.5 x ¢ where ¢ is the 1 — ¢ quantile of a standard

normal random variable):

By = {(bw, ..., by) : Bj(7;r)—cxse(By(7;1)) < bjy < Bj(7t;r)+cexse(Bj(m;r)) for j =1, ..., p}.

B

1 ai—a, for B, by forming the union:

Last, we construct the confidence region CR

: B.
(1Rflayﬂm:: LJ (1leaAT)
7"601*2’137012
and use C’Rfﬁahw to form decisions regarding a null hypothesis for (B, ..., Bp1)-

11



C Extension of the Framework to Panel Data
Consider the unbalanced panel equations with firm fixed effects ~;:

Y;t/: ’Yz/+Xllt6 ‘I‘Uzt ) +77it, and Wit:Uit+5it forizl,...,n andtGSi.

1xp 1xp Ixkkxp 1x11Xp  1xp 1x1 1x1  1x1

We assume that the data is missing at random from certain time periods. Specifically, we let
T denotd’| the total number of time periods in the panel. For i = 1,...,n, we let S; denote the
subset of T" in which the data on firm ¢ are observed, with 7; denoting the cardinality of S;.
When time fixed effects are included, X;; contains T; — 1 indicator variables corresponding
to the years in S;. We let E(n;) = p, and E(e) = pe for i = 1,..,n and ¢t € S; and we
consider the case where n is large relative to 7'

Let A; = T > A and Azt = A;;— A;. The fixed effect +; drops out from the Yt equation:

tes; ax1

Vi=X,8+Us0 +1i, and Wy=Us+¢&, fori=1,..nandtesS;.

Ixp  1Ixkkxp 1x11Xp 1y 1x1 1x1  1x1

Letting A; = [A4], ..., A;T]’ , we obtain the panel analogue of assumption A;:
T; Xa

Y, = X, 6+U o + 7 and W, = U, + & fori=1,...,n

Tixp  Tixkkxp T;x11XP  Tixp Tix1  Tix1  Tyx1

Suppose that As-Ag hold for this equation. Specifically, let
Cov[ni, (Xis, Uis)] =0 and  Covley, (Xis, Uis,mis)] =0 for i = 1,...,n and ¢, s € S;.

This imposes “strict exogeneity” across time periods, as is common when applying a within

transformation. Given that A; = A; — T > Ay, we obtain
tes;

Covlijy, (Xis, UZS)] =0 and Covléy, (Xis, Uis,ﬁis)] =0fori=1,..,nand t, s €S,.

Let the binary indicator [, for i =1,....n and t = 1, ..., T, denote whether the observation

(Yit, Xit, Wit) is missing (at random). Let I; stack I;; for t = 1,...,T. Let

Tx1
.. .. .. .. T T .. ..
045 =E(A B)=EQ_ AyB}) =Y E(LAyB,) =Y  E(Iy)E(AyBy).
=1

axT; Tixb teSiaXhXb ax11xbp —1 ax1ixp

5The number of time periods 7 should not be confused with the dimension of the nuisance parameter

i line A ix B.
2T/\><1 in Online Appendix
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In particular, we have oy . =0 and oy, . = 0. Further, let

. = -2 . /__ .. — Al J— o/ PR

Then, provided Ui is nonsingular,

B = by x, — bi,.x.0-

Let Ay = €4i,.x, and A =[AL, .., A;Ti]’. By A;-Aj, we obtain

T; xXp T><11><P T><p T;x1 T;x1 T;x1
Further, we have
2 — g2 2 g 8 — 42 2 _ s 2 2
0. = 0p, 0z, OV, v, = Ow, 5,0 = O'Uzé, and 0y, = 0'0p 0+ 0

Provided 0125/- is nonsingular, we have
1

s — T2 o —
bWi.h_UWiUWi%_pé and o

where

p=owog, = BQ_ WalWi) " EQY_ Unll).
tes; tes;

Given p # 0, we obtain the representation from Theorem 3.1 and we apply the results of the

paper to the transformed variables. For inference, we use the robust standard errors that are

1 - . o= (! / /
clustered at the firm level. For example, we estimate b 5 and €. 5 = (€ B €Ay Bur
Tixa v v
using their plug in sample analogues
- - e
E B E B! ) and € A B, = A — Bubj, s,
1b><TT><b 1b><TT><a 1><a
and estimate the asymptotic variance of \/n(bs 5 — by 5 ) by
n
Lo Lo
CY BB Beysdy, BIEY B
i 1b><TT><b i1 oXTi Tyxa axT; 1><b i 1b><TT><b

Note that the interpretation of A4-Ag applies to the stacked and within-transformed
variables. In particular, A, assumes that

T

T
EO &)=Y BI)EE) < ro? =rsB(Y_ U2) =rY_ Bl E(U2).
t=1 t=1

tes; tesS;

13



For this to hold, it suffices that E(£2) < kE(U2) for t = 1,...,T. A; assumes that

R2 . —1_— 0727]-1- _1_ (Ztes T]]zt) 1 Et 1 E(1; )E(n]zt)

% BV e, Y) i BUDE(YR)

STj,

o2

and it suffices for this that R2 - =1- J"J” <7tjfort=1,..,T. And Ag assumes that

it-Uit
]’L i Yt

Cop < Ts  » = E(Ztesiﬁjitﬁhit) — Zt 1 (Izt) (njztﬁhzt)
I (S e B E (S, )t (S EL) B[Sy B (L) B

which holds if one imposes the same sign restriction on Cov (i, i) for t =1,..., T.

The panel analysis without fixed effects proceeds similarly but omits the within trans-

> T Ay,

Z T; i=1teS,;
=1

formation (i.e. it sets v; =~y for i = 1,...,n and Ay = Ay —

D Mathematical Proofs

Proof of Theorem [3.1} By Ay-A;, Cov[(r/,¢)’, X] = 0. Since Var(X) is nonsingular, A,
gives
B =byx —bwxo.
Ay-Aj also give o, = 0 and 05, = 0., = 0. Using &€ = ¢ — E(¢) and 7) = n — E(n) together
with Y/ = U + 7/ and W = U + &, we obtain
— _ _ 2 2 _ g/ 2 2
oy =05t0., Oy =00 =050, andoy =0d0;0+o0,.

Since Var[(X',U)'] is nonsingular, o2 # 0. Thus, o # 0 and

byyw =05 0y =p0 and a;;a% =0'pd +T.

1
6=D(p) = -by
p
1
B=DB(p) =byx —bwxD(p) =byx — bwx—by, and
- 1
I'=G(p) = 0,705 — D(p)pD(p) = o705 — b’?w;byw

Lemma D.1 Under the conditions of Theorem R%/-W <R

14



Proof of Lemma D.1} If 02 =0, set RZ

;T O Sy T Yy
2 2
o= o=
2 _ w2 %W 2
Ry w = —37b,w = 5 (9p)” and
Y Y
2 2
o_. 1 1 0=
R: . =1——E=_ (062 —02)=—-0%2% = L2
Y;.0 Uf;j U%( Y; 7) g% i%0 J% iP
It follows that
o o2
2 o _ w2 2 on _ %W 2
Ry 5 — By 5 = U—g@ﬂ —0;p°) = U—%P(l —p)o; = 0.
v v

Proof of Corollary The identification set J%7¢ obtains from A;-Ag and the (Var[(Y’, W)])
moments given by (in)equalities , using the expressions in Theorem m To show that
Jk7e is sharp, let d = D(r), b = B(r), and g = G(r). We show that for each (r,d,b,g) €
J*7 there exist random variables (U*, n*, e*) such that Y/ = X'b + U*d + n* and W =
U* + ¢* that satisfy As-Ag. Specifically, (X, U*, &%, n*) satisty As-Ag, Cov[n*, (X', U*)] =0,
Covle*, (n*, X', U*)'] = 0. Further, % = r and thus A, holds, 0% < ko2_. Last,

£* ="
G(r) = 0202. and therefore A5 holds since, when oz #0,

w i
2 2 2 2 2 2
Tpr 05 %, oz Oy Oy
1- Uzj - U_QW(U2J — Gjj(r) < U_QW[Uzj - 02] (1—m)] =,
Y; Y, W Y, W w

and Ag holds since ¢;;, < sgn(Gjn(r)) < Cp.
To construct these variables we proceed similarly to Chalak and Kim (2019, proof of
corollary 3.2). In particular, we let V' be any random variable such that V = ey is

nondegenerate and satisfies

1 Oy Wi

- o o Ovw
oy .y = Vropoy and UY.V—\/;UV‘TW 2
W

Note that these covariance restrictions are coherent. Specifically,

2 . VW oWy
os N Vs
- v ) B
Var(V,W.Y") = | ropow o, oW
TYIW Ty W O o2
2 Y Y%
VT o W Y

2
1%

) 9 (1—r)o 0
wyry — Oy voy Ov W yry = 0 v

is positive semi-definite because 0 < ¢z and its Schur complement

0<o

15



is positive semi-definite since it is block diagonal with 0 < (1 —r)oZ and 0 < G(r).

For instance, to construct V, set oy to some value (e.g. oy = 1) and let ¥ be any

random variable that is uncorrelated with (X', W, Y’)" (e.g. a residual from a regression on

(X', W,Y")). When o2:

(W,{/’)’
oy ¢ to construct b(/_(Wy/), and the scalar

is nonsingular, one can use the above restrictions on oy  and

1 /

2 2
» = {0—3[09 = U i 5y Oy b v oy 1

N[

(5¢ is set such that the variance of the generated V is 0‘27) in order to generate

If U?W 7y is singular, one can generate V by omitting the redundant Y components from the

above regression construction. Last, V = X'by x + V+FE [V — X'by.x] obtains by setting
by.x and E(V) to some value (e.g. zero).

Then it suffices to construct U*, €*, and n* as follows
W = (X' V)bw.x vy +{ewx vy + EIW — (X, V)b x vy} = U + ¢,
and, if r # 1,
Y = (X, V, )by, x veryHevix vy +EY —(X, V. e")by (x vy} = (X, V, )by (xr viery+1"
whereas if » = 1 then Ty =1 and ey, (x/ vy = € = 0 and
Y = (X', V)by.xvy + {evixr vy + ElY — (X, V)by vyl = (X, V)byxr vy + 1"

In particular, (X, U*, e*, n*) satisfy Ay-As since by construction Cov[n*, (X', U*)’] = 0 and
Covle*, (n*, X', U*)'] = 0. To verify that A; holds, note that if r # 1,

Y =Vbyy + X'(byx —byxbyy) + by + {evixrvery + EY — (X', V,e")by.(x7,very]}
= Vb yd+ X' (bw.x — by.xby i)d + X'(by.x — bw.xd) + €*by.- + 1"
= (X", V)bw.x',vyd+ X'b+n*
=U"d+ X'b+n*
where the first equality uses Cov[e*, (X', V)] = 0 and partitioned regression, the second
equality makes use of

-2 o 1 Oy.w o1
O-W UY.

<t
I
Q
=
Q
=
Q
<
[}
I
Q
=
=S|
Q
=
<
=
=
=
|
>
s
<
S

by v



and the third equality uses partitioned regression, b = by.x — by xd, and

UY’,EW(X/’V)/ 1 ~ o~ ~
byes = bi/fw.(x’,v)’ -T2 - o2 Cov(Y, W — Vby, \7)
EW4(X’ V)’ €47, v
(Logor%%)/rogo
1 | oWV gg.v vOow

——— Oy — = 0.
— a2 Ovw 2
(L —r)os, o

If r =1, a similar calculation gives

Y

(X/,V)b Y.(X +{€y X'V

y +EY — (X', V)by.(x vy}
(X/, V>bW.(X’,V)’d + X b + 77*

=U'd+ X'b+n*.

Last, to verify that A4-Ag hold, it suffices to verify that

2 ~ 2

05 VarVbyy)  wy d

2 2 2 2 r, an

o2 o o202

W W vOw

1 1
_722~_/~~_~~_—2/2~ g_/~~_~~_ 2%

G(r) =0, 0% bY.WTbYW_O-W(dUU*d+UW*) bYWTbYW O On-

Proof of Corollary : We start by deriving the identification region R¥™¢ for p. First
we show that R%/,f/ <p<l Ifoyy =0or 0127 = 0 then set R?

Wy = 0 < p < 1. Suppose
that Oy W # 0. Since 0 < p and 0 < I'" then for any vector = , we have

0< ,ox’aI}VQa2~ x —

/

Suppose that o2 is positive definite so that 0 < oy, QU;QUYW (this is without loss of

generality since we can drop the redundant Y components otherwise). In particular, for
T = a;zayﬁ,, we obtain

—2 —2 2 —2
Ovir 700" )05 /0O 0 v (00 0 17
RZ - — 020+ c0=2gc - :( W,y y) v W Oy Wy ( 7 oy w) <p<1
wW.Y 1774 YYy YW (0~ ~J~2)O_~20'2~(U~2J~ ~) =
WYy y JCw y\Ty YW
2
Second, by Ay, we have 1 — p = U‘gi < /ﬁ% = kp and thus p € [1%&’1] Third, by As,
2
we have that for j = 1,...,p, R; ;= (1- Z%) < 75 (recall that if 07 = 0 then we set
. : ¢
2
R2 . = R2

V.0 W = 0). Multiplying by g; and substituting for I';; we obtain

2 2

1 Oy 1 Ty,

/ o i -2_2 oy Tph.o. A
by, W;by W=y ooy by pry W) STy
w w
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2
and thus TLR2 =1 b?, WU—W < p < 1. Last, RS, obtains since 0 < p and T'j, = Gju(p) =

-2 1
05 07, 7, — by, pryh W SO that

by wby, w 9

s hen 0205 ¢ < 0
NI P WA Oy 0y,
Gin(p) < 0if and only if ¢ 0 < by by, i When U;I/QU)”/th —0
p = M when 0 < 0-20¢ 5
”V"V TV, W ~Yj-Yn
Combining the results, we have p € RF™¢ = [R?X/Y’ 1N [1%{’ 1] [ R‘Q/V o 1] }C\'l RS,
J<h

To show that R*7¢ is sharp, it suffices to show that every r € R*™¢ corresponds to a
point (r,d,b,g) € J*°. Let r € RF¥™°. First, we show that 0 < G(r). If R‘Q;Vf, = 0 then
G(r) = 002 = 0. Otherwise, note that

o2

2 / L 2 2 o o] —

=

2 2 . 4 2
Further, when Ry - # 0, 0 X G(R};, ;). Specifically, 0 < o R - and

e / VNA2 o v
oy WOy = Var(bw_i,Y)of, Oy WO

%,
2
B

'Var(by, ;Y)ore — 2'oy yoy 3@
= Var(by, ;Y)Var(2'Y) — [Cov(2'Y, W)]?
= Var(b%/yf/)\/ar(x'f/) — [Cov(z'Y, by Yf/)] >0

where we make use of W/ =Y’ by v + E’WY and COU(Y/, €y ) = 0 in the last equality. Since

re R C [R?% 1], there exists 0 < A < 1 such that I =X+ (1—-X)z— and it follows
wW.Y
that
0 =X G(r) =AG(1)+ (1 - NG(R% ;).
172 %% _ 192
Clearly, - < r < 1. Further, for j = 1,...,p, if 0~ # 0 then —b WUTZ = r_jRWYj <r
o2 o2 02
implies that %(1 —75) < % - bff WT = Gjj(r) 0‘% 0 then 0 = —2(1 — 7;) <
w w W

(
Gjj(r) = 0). Last, from the expression for G,,(r) = UV_T/QUYGY;] — bY/jW%b?th we have that

Cin < sgn(Gin(r)) < ¢y for j,h =1,...,p with j < h.
The sharp bounds D*7, B*™, and G*7 for §, 3, and T follow from the mappings D(-),
B(-), and G(-) in Theorem [3.1]
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Proof of Theorem [5.1} First, for random column vectors A and B, we collect the regression

intercept and slope estimands as follows
A/ = [E(A), — E(B),bA,B] + B,bA,B + 624.3 = (1, B/)bz.B + 614.3.

Given observations {A4;, B;}™,, denote the linear regression intercept (5% ;) and slope (b4.5)
estimators and the sample residual (é4.5,;) by:

n

1
bap = (b = (- 1,B))(1,B)))
A.B (AB? AB) (nZ( )

i=1

n

Z (1, Bj)'A}) and €, p; = A} — (1, B)ba .
=1

3|>—‘

Further, we collect into 7* the following estimands

*/

7 = [vee(by v xn) s biv v xns Ot xyrs - O, xrys vee(by x ) }",{,X,UW vec(oy)7,

and into 7 the corresponding estimators:

ﬁ- = [UBC(Z;Y(WXI)I>,7 EQ/V.(Y,,X/ ’y b, Yl X/)/ ceey ~;/V.(YP,X/)/7 UeC(BYX)/7 ~/‘/V.X7 5-‘}/21)66(6-32?),],
Last, let o4 = £ 3" | A, 4]
2
(

%17xl)/, /Z\L%]_’Axl)/, I ®(A712/T/}

AEdZ-G/ [®A2 //,A2 / //,A2 AR [l
Q g{po Ha,w,xns Bayr xys By, x0) ) Lo 1)< Lp(p 1)

YD I ®A
1,Y,,X") oxp 2
and

1 n
L= LS el (1 We X0 ) (1Y XD
i=1
(1, }/17;7 Xi/)EW.(Yl,X’)’,% ey (1, }/;)ia X;)GVV.(YP,X’)’,M 'UeC((l, X’L{>/€/Y.X7’L'>/7 (1, X@{>€WX,7;7 'U@C(EY‘X’Z'EQ/.XJ—O'}%,)/]/.

Recall that @ is finite (by A;(i)) and nonsingular. For a symmetric matrix C' and a
vector D, let (' denote the submatrix that removes the last %p(p + 1) rows and columns of

C and let D; be the subvector that removes the last %p(p + 1) rows of D. Then
V(i —75) = Qr'WnLy = (@' — Qr)v/nLi + Qr'vnLy.

Since (i) gives Q7' — Q7' = 0,(1) and (i7) gives \/ﬁLl—dﬂV(O,El), we obtain that /n(m; —
) = Q7 /nLy + 0y(1)-5N(0, ). Moreover, it follows from iy xry: S 11y Vn(by, x —
Vx) = Op(1), and 1370 ey, xi(1, X)) = Eley,x(1,X)] + 0p(1) = 0,(1) for j = 1,....p
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that for any j,h=1,....p

len . .
N2 €y, X,i€Y, X

=72 (v, — (1, X)) (by,x — by, x))(esxai — (1 X)) (by,.x — B3, %))

Ll 1 n 7 %
=N"2Y €y, Xi€Y, Xi — [ﬁzizleyjuxyi(l? X)Vn(by, x — by, x)

1 n T * 7 * ~ 7 *
= [ e xa (L X)W nlby, x = b5, x) + (by.x = by, x)'fit1 xry vV (by, x — by, x)

1
=n"2) 0 €y, xi€y, x,i + 0p(1).

Similarly, by (i), we obtain that

e . . 1
—Yiby xifvxi = Blevxev x)+0p(1) = oy, 5, 40,(1)  and - =371 &y = oy +op(1).

Thus, since n= /237" | €y, x€v,.x; is Oy(1) by (ii), we have that for j,h =1,..,p

\/_nZz 16Y XlGYhX’L
Zz 1 WXZ

Together with /n(7, — m}) = Q7 'v/nLy + 0,(1), we obtain by (i) and (i) that

1 -1
- (UX%V) 'n 22?:1639-X,i6Yh.X,i + 0,(1).

Vn(F =) = Q 'nL + 0,(1)-5N(0, 5%)
and therefore that the subvector /n(7 — W)i)N(O, ¥).

Proof of Corollary : The identification set J%7¢ obtains from A;-A% and the (Var[(Y, W)])
the moments given by (in)equalities (#l7)), using the expressions in Theorem The sharp-

ness proof in Corollary [3.2|implies that J*7¢ is sharp. Specifically, since G(r) = aWQUTQ]*, we
have that Cin < T i < Cjp.

To derive R¥™¢, for j,h = 1,...,p and j < h, consider the restriction

25 o _be 2 Llpo
o <y — Gl O 7%~ O% v bh <
Cip > Ljn = T o 1 L, 2 1 i="
G (P)Gr(P)]? (o5 0% = 05 )2 (o o8 = 505 )
If 02~ =0 or af; = 0 then a =0 or O’nh = 0 and ¢j, < 0y, < Cj is either incorrect (if

0¢ [ Cjn» Cjn]) oOr unlnformatlve about p (if 0 € [c;y,, Gn]). Suppose that o2 7é 0 and o2 0.

Multiplying the numerator and denominator by 0 < po2 0Y10~ gives

Pr o
Q]hg 2 1
(p— RZ, ) (p— R ;)

< Cjn.
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The expression for Rj, then follows from encoding the sign of r,; ,, via the function

th(T’) =17 X T%’Yh — TW,SN’]-TW,Y’;L

and the magnitude of r, . (r < Aorc?< rimh) via the quadratic function

2
N55Mh

Mjn(ric) = (r x 1y, 5, — My, g,)” — ¢ (r— Ry ) (r = By 5,)-

T, T+r? )
8% +r W.Y; it
j<h
In addition, R*™¢ is sharp since every r € R*™ corresponds to a point (r,d, b, g) € J"™°.

Specifically, if » € R*™¢ then F <r<1,0=<G(r), and R%/j.(} < 75 for j =1,..,p by

Corollary . Further, since r € R¥7¢ C Ry, from the sign and magnitude restrictions in
Sin(r) and Mjy(r; c), we have that c;;, < — G < ¢, for j,h=1,...,p with j < h.

(G (r)Grn(r)]2
Next, we examine the behavior of th(r) and Mjy(r; c) when oF 0 _# 0. First, we have

By Corollary we obtain that p € R¥™¢ = [R% _ 11N [{, 1] N [ R: o 1] N RS,

ATHAY
—21—"<r when0<ry ;
Y Yh Jrth
0 < Sju(r) & "y, wy, <0 when Ty, v, =0
TWY WY,
r<—2—"  whenry 3 <0
TV JrTh

£ 2 _
Further, if RY,J_ ¥ = 1 then
lujh('f’; C) = (1 — C2)(T — RI2/T/)~/J)2 Z 0.

Suppose instead that R; 7, # 1. We obtain
.

Mn(r;c) = r2R2 g+ R%/V 7, Riv 7. = 2T X Ty T T,
—Ar? 4+ ¢ T(R2 7, +R‘2;V'1~,h) —c RWYRI%VYh
= r2(R2~, v, —C 2+ r[=2ry 5y, e (R%/Y]_ + R%/; )+ (1 - CZ)R%,%R%,Y}L
= TQ(R%Wh — )+ r[R;@mu — R%Yh) —(1— 02)(R§V + Ry 5 )]
+(1—-A)RE, ~JR§~V‘?}L,

2 2
- Lryy, "W, Rv”m v Ry 5 T 2Ty W Yh
1—R2

Y.
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If 2 = R%Yh then M, (+; ¢) is a linear function

M (r; rfijh) = T[RIZ/Y/.(%,}L)'(l — R?@.h) - (1- Rf’th)(R%/ﬁ + R%,Yh)]
2 2 2
+(1- R?jfh)RW.}-Rth
2 2 2 2 2
= (1= Ry, s (B 5, 5,y — (Ripg, + Bip g )+ Ry 5 Ry 5, )
and
0 < Mp(r;c)
R Yj B 5, 2 _ p2 2 2 2
r < o (Rwy . when ¢ = Rf, 7 and Ry Wy < Ry, . + RWYh
0<(1- R2~ . )R‘%VYR‘Q/VY when ¢? = R2Y y, and R, Ey = RE o + R o
o R2 , Y; .
WY, WY, 2 _ p2 2 2 2
R‘sz.(?j,yhy (R2 +R€v 0 <pr  when ¢* = Rffj.ffh and RW + RW?}I < RW(},})'
Otherwise, if ¢? # RY 3, the discriminant of M;,(+;¢) is
Ajn(e) = [R5, gy (1= By 5,) — (1= )Ry, + Ry 5 ) —4(1 = A)(RY, 5 — ARy Ry
2 2 2\(R2 R2 2
:[Rw(yy)/<1_Ry Yh> ( C)( V'['/f/ ~,{/h)]
—(1— 02)43 Rﬁw RY 5. +4¢*(1 = )Ry, %R‘%V;h
2 2 2\ ( 2 2 2
= [Rw_(yjyhy(l - R{/jyh) —(1-c )(Rvyfj + Ry )]
2\ 22 2 2 2 2 2 2\ 2 2
— (1 — C )[RW(%,Y/}L)/(]' — R?]Y/h) — (RW.~;L + RWY/])] + 4c (1 — C )RW ~]RVT/ ~h
=Ry (5, 5,y (1= By 3 )* = (1= ) (R ¢ + Ry g )° + 4 (1= )Ry o Ry o
- (;2{34 e m/( Rf, Yh) (1= (R ;. RE )7 — 4R§~m~,jR§~V Al
4 2 2\ P2 2 2
In particular, Aj;(c) < 0 if and only if
4 _p2 )2
0<c?<1-— RW'(~j'~h)'(1 RYJ"Yh)
(R?/T/ ~j o R‘Q/T/f/h>2
R?/V (Y Yh)’(l_R%’uYh)2 2 . 2
Further, we have that 1 — (R‘QZVY _R%‘YZ)Q < R?j~~h since if ¢© = R}~/j~~h then
Ajn(c) = [R%, @y L= R%, y)— (1= cz)(Rgm + Ry 5 ) —4(1 - c2)(R§jY - A)R%: ~jR§~V;h
2 2 2 2 2
(1 B R ) [R (Y5, (RVV.Y + RW i/h)] >0
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and if R? = 0 then

Y;.Y;
4 2 2
RW(~ }7)/(1_R5}7~h) <R~7~] R i/) 9
1-— 5 s — =1— ) <0= R?~~h‘
(RY vy, ~ g, (£ vy, ~ g’ ’
R4 /(lfR2~ v )2
. 2 W.(Y;.¥3,) V.Y, 9
It follows that if 0 < ¢* < 1 — (Rév:_R%/y,j)zh then ¢ < RY 7 and

0 < M;p(r;c) & —oc0 < r < o0.

If ¢ # R% Vi and 0 < Aj,(c) then define

— 2
Fin(e) = =Ry 3, 5,0 (1 — By, 3,

F(e) + Apn(e)*

Fin(c) — Aju(c)? and pl,(c) = 22 oy
—C
Y; Y,

We then have that
t(c),00)  when ¢ < R?, Yh

r € (=00, pj,(c)] U [pj,
0< Mjh<r;c) A { rc [p;rh(c),p;h(c)] when R2 o < c?

Combining these results, yields the equivalence between 0 < M, (r; ¢) and the range of r
The sharp bounds D*7¢ B%7¢ and G*™¢ follow from the mappings D(-), B(-), and G()

in Theorem [B.1]
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We consider the regions By,

7’;*



Table 7: Bounds on the Cash Flow Coefficients in the Investment, Saving, and Debt Equa-
tions Using the Full Panel and Accounting for Asset Tangibility

‘ S;’T T T jn,‘r,c* bY.(W,X’)’
Results without fixed effects for k = co and 7= (1,1,1)
B | [0.172, 0.145] [0.049, 0.145]  [0.118 ,0.146]  [0.118, 0.141] 0.143
(-0.213, 0.151)  (-0.074, 0.151)  (0.111,0.152)  (0.110, 0.148)  (0.136 , 0.150)
Boy | [-0.540,0.124]  [-0.029, 0.124]  [0.102,0.124]  [0.101, 0.121] 0.121
(:0.621, 0.130)  (-0.048 , 0.130)  (0.094 , 0.131)  (0.094, 0.128)  (0.114 , 0.129)
By | [0.424, 1.865] [-0.424 ,-0.224]  [-0.425 -0.390]  [-0.421, -0.389] -0.418
(-0.438 , 2.229)  (-0.438 , -0.189) (-0.442 ,-0.372) (-0.438, -0.371) (-0.436 , -0.400)
Results without fixed effects for #* = 0.5 and 7* = (0.9,0.9,0.9)’
B | [0.125,0.145]  [0.125, 0.145]  [0.124 ,0.146]  [0.124, 0.141] 0.143
(0.119 , 0.151)  (0.119, 0.151)  (0.117,0.152)  (0.117, 0.148)  (0.136 , 0.150)
Bor | [0.106,0.124]  [0.106, 0.124]  [0.106, 0.124]  [0.106, 0.121] 0.121
(0.101, 0.130)  (0.101, 0.130)  (0.099 , 0.131)  (0.099, 0.128)  (0.114 , 0.129)
By | [[0.424 ,-0.396] [-0.424 ,-0.396]  [-0.425 -0.395]  [-0.421,-0.395] -0.418
(-0.438 , -0.382) (-0.438 ,-0.382) (-0.442 ,-0.378) (-0.438, -0.378) (-0.436 , -0.400)
Results with year and firm fixed effects for k = oo and 7 = (1,1, 1)
B | [0.719,0.132] [0.549,0.132]  [-0.565 ,0.132]  [-0.564, -0.154] 0.129
(-0.758 , 0.138)  (-0.581, 0.138)  (-0.606 , 0.139)  (-0.605,-0.136)  (0.122, 0.137)
Bor | [2.913,0.174]  [-0.329 , 0.174]  [-0.342 ,0.174]  [-0.341, -0.031] 0.170
(-3.142,0.182)  (-0.369, 0.182)  (-0.392 , 0.184) (-0.391, -0.006)  (0.159 , 0.181)
Bai | [0.374,00]  [-0.374,-0.288] [-0.374,-0.285] [-0.357, -0.285] -0.368
(—00,00)  (-0.388,-0.237) (-0.402,-0.219) (-0.402, -0.220) (-0.383 , -0.353)
Results with year and firm fixed effects for #* = 0.5 and 7* = (0.9,0.9,0.9)’
Bii | [0.081,0.132] [0.081,0.132]  [0.081, 0.132] - 0.129
(0.075 ,0.138)  (0.075,0.138)  (0.073 , 0.139) ; (0.122 , 0.137)
Bor | [0.133,0.174]  [0.133,0.174]  [0.132, 0.174] . 0.170
(0.124, 0.182)  (0.124, 0.182)  (0.121 , 0.184) - (0.159 , 0.181)
P31 | [-0.374 ,-0.358] [-0.374 ,-0.358]  [-0.374 ,-0.358] - -0.368
(-0.385 , -0.346) (-0.385 , -0.346) (-0.388 , -0.342) - (-0.383 , -0.353)

The sample is an unbalanced panel of 161,959 firm-year observations. Y7, Ys, and Y3 denote Investment,

Saving, and Debt respectively and X = [Cash Flow, Firm Size, Asset Tangibility]. When year fixed effects

are included, X also includes year indicator variables. When firm fixed effects are included, the equations’

variables undergo a within transformation. ¢ sets (c¢y5,¢12) = (€93, ¢23) = (—=1,0) and (¢;5,¢13) = (0,1)

whereas ¢* = 0. Robust standard errors for 7 are clustered by firm. 50% and 95% confidence regions are in

brackets and parentheses respectively.
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