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Abstract

This paper obtains identi�cation of structural coe¢ cients in linear recursive sys-
tems of structural equations without requiring that observable variables are exogenous
or conditionally exogenous. In particular, standard instrumental variables and con-
trol variables need not be available in these systems. Instead, we demonstrate that
the availability of one or two variables that are equally a¤ected by the unobserved
confounder as is the response of interest, along with exclusion restrictions, permits the
identi�cation of all the system�s structural coe¢ cients. We provide conditions under
which equiconfounding supports either full identi�cation of structural coe¢ cients or
partial identi�cation in a set consisting of two points.
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1 Introduction

This paper obtains identi�cation of structural coe¢ cients in fully endogenous linear recur-

sive systems of structural equations. In particular, standard exogenous instruments and

control variables may be absent in these systems1. Instead, identi�cation obtains under

equiconfounding, that is to say in the presence of (one or two) observable variables that

are equally directly a¤ected by the unobserved confounder as is the response. Examples

of equiconfounding include cases in which the unobserved confounder directly a¤ects the

response and one or two observables by an equal proportion (proportional confounding) or

an equal standard deviation shift. We show that the availability of one or two variables that

are equally (e.g. proportionally) confounded in relation to the response of interest, along

with exclusion restrictions, permits the identi�cation of all the system�s structural coe¢ -

cients. We provide conditions under which we obtain either full identi�cation of structural

coe¢ cients or partial identi�cation in a set consisting of two points.

The results of this paper echo a key insight in Halbert White�s work regarding the

importance of specifying causal relations governing the unobservables for the identi�cation

and estimation of causal e¤ects (e.g. White and Chalak 2010 and 2011; Chalak and White,

2011; White and Lu, 2011(a,b); Hoderlein, Su, and White, 2011). A single paper can

do little justice addressing Hal�s proli�c and groundbreaking contributions to asymptotic

theory, speci�cation analysis, neural networks, time series analysis, and causal inference,

to list a few areas, across several disciplines including economics, statistics, �nance, and

computer and cognitive sciences. Instead, here, we focus on one insight of Hal�s recent

work and build on it to introduce the notion of equiconfounding and demonstrate how it

supports identi�cation in structural systems.

To illustrate this paper�s results, consider the classic structural equation for the return

to education (e.g. Mincer, 1974; Griliches, 1977)

Y = �oX + �uU + �yUy; (1)

where Y denotes the logarithm of hourly wage, X determinants of wage with observed re-

1Standard instruments are uncorrelated with the unobserved confounder whereas conditioning on control
variables renders the causes of interest uncorrelated with the confounder.
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alizations, and U and Uy determinants of wage whose realizations are not observed by the

econometrician. Elements of X may include years of education, experience, and tenure.

Interest attaches to the causal e¤ect of X on Y , assumed to be the constant �o. Here,

U denotes an index of unobserved personal characteristics that may determine wage and

be correlated with X, such as cognitive and noncognitive skills, and Uy denote other un-

observed determinants assumed to be uncorrelated with X and U . Endogeneity arises

because of the correlation between X and �uU , leading to bias in the coe¢ cient of a linear

regression of Y on X. The method of instrumental variables (IV) permits identi�cation

of the structural coe¢ cients under the assumption that a �valid�(i.e. uncorrelated with

�uU+�yUy) and �relevant�(i.e. E(XZ 0) is full raw rank) vector Z excluded from equation

(1) and whose dimension is at least as large as that of X is available (e.g. Wooldridge, 2002

p. 83-84). Alternatively, the presence of key covariates may ensure �conditional exogene-

ity�or �unconfoundedness� supporting identi�cation (see e.g. White and Chalak (2011)

and the citations therein). We do not assume the availability of standard instruments or

control variables here, so these routes for identi�cation are foreclosed.

Nevertheless, as we show, a variety of shape restrictions2 on confounding can secure

identi�cation of �o. To illustrate, begin by considering the simplest such possibility in

which data on a proxy for �uU , such as IQ score, is available. Let Z denote the logarithm

of IQ and assume that the predictive proxy Z for U does not directly cause Y , and that Z

and Y are equiconfounded. In particular, suppose that Z is structurally generated by

Z = �uU + �zUz;

with Uz a source of variation uncorrelated with other unobservables. Then, under this

proportional confounding, a one unit increase in U leads to a an approximate 100�u%

increase in wage and IQ ceteris paribus. It is straightforward to see that, by substitution,

�o is identi�ed from a regression of Y � Z on X. Note however that Z is not a valid

instrument here (E(Z�uU) 6= 0) since Z is driven by U .
The above simple structure excludes IQ from the equation for Y to ensure that �o is

2Shape restrictions have been employed in a variety of di¤erent contexts. For example, Matzkin (1992)
employs shape restrictions to secure identi�cation in nonparametric binary threshold crossing models with
exogeneity.
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identi�ed. Suppose instead that X = (X1; X2; X
0
3)
0 and that the two variables X1 and X2

are structurally generated as follows

X1 = �uU + �x1Ux1 and X2 = �uU + �x2Ux2,

with Ux1 and Ux2 sources of variation, each uncorrelated with other unobservables. We

maintain that the other elements of X are generally endogenous but we restrict X1 and

X2 to be equiconfounded joint causes of Y . For example, X1 may denote the logarithm

of another test score, such as the Knowledge of World of Work (KWW ) score (see e.g.

Blackburn and Neumark, 1992), and we relabel log(IQ) to X2. Here, wage, KWW , and

IQ are proportionally confounded by U . Substituting for �uU = X1 � �x1Ux1 in (1) gives

Y �X1 = �oX � �x1Ux1 + �yUy;

and thus a regression of Y �X1 onX does not identify �o sinceX1 is correlated with �x1Ux1.

Further, although X2 and X3 are exogenous in this equation, they are not excluded from

it and thus they cannot serve as instruments for X1. Nevertheless, we demonstrate that in

this case �o is fully (over)identi�ed.

In the previous example, two joint causes and a response that are equiconfounded secure

identi�cation. Similarly, one cause and two joint responses that are equiconfounded can

ensure that �o is identi�ed. For example, let Y1 and Y2 denote two responses of interest

(e.g. two measures of the logarithm of wage, one reported by the employer and another by

the employee). In particular, suppose that

Y1 = �1oX + �uU + �y1Uy1 and Y2 = �2oX + �uU + �y2Uy2 :

Note that �1o and �2o need not be equal. As before, we maintain that an element X1 (e.g.

log(IQ)) of X is structurally generated by

X1 = �uU + �x1Ux1 ;

with the remaining elements ofX generally endogenous. We demonstrate that here (�01o; �
0
2o)

0

is partially identi�ed in a set consisting of two points.
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Various other exclusion restrictions can secure identi�cation of structural coe¢ cients in

the presence of equiconfounding. Consider the classic triangular structure:

Y = �oX + �uU + �yUy;

X = oZ + �uU + �xUx:

As before, Uy and Ux denote exogenous sources of variation. The method of IV identi�es

�o provided that the excluded vector Z is valid (E(�uUZ
0) = 0) and relevant (E(XZ 0) full

raw rank) and thus has dimension at least as large as that of X. Suppose instead that Y ,

Z, and an element X1 of X are equiconfounded by U :

X1 = 1oZ + �uU + �x1Ux1 and Z = �uU + �zUz;

where Ux1 and Uz are each uncorrelated with other unobservables. The remaining elements

of X are generally endogenous. For example, a researcher may wish to allow IQ to be a

structural determinant of the subsequently administered KWW test, in order to capture

learning e¤ects, and to exclude IQ from the equation for Y if this test�s information is

unavailable to employers. Then Z denotes log(IQ) and X1 denotes log(KWW ). In this

structure we refer to Z and X1 as equiconfounded pre-cause and intermediate-cause respec-

tively. We demonstrate that (�0o; 
0
o)
0 is either fully identi�ed or partially identi�ed in a set

consisting of two points. Importantly, in contrast to the method of IV, here Z is a scalar

endogenous variable.

The paper is organized as follows. Section 2 introduces notation. Formal identi�cation

results, including for the examples above, are discussed in Sections 3 to 6. Often we present

the identi�cation results as adjustments to standard regression coe¢ cients thereby revealing

the regression bias arising due to endogeneity. Section 7 contains a discussion and Section

8 concludes. All mathematical proofs as well as constructive arguments for identi�cation

are gathered in the appendix.
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2 Notation

Throughout, we let the random k�1 vectorX and p�1 vector Y denote the observed direct
causes and responses of interest respectively3. If there are observed variables excluded from

the equation for Y , we denote these by the ` � 1 vector Z. We observe independent and
identically distributed realizations fZi; Xi; Yigni=1 for Z; X, and Y and stack these into the
n � `, n � k, and n � p matrices Z, X, and Y respectively. The matrices (or vectors) of

structural coe¢ cients o and �o denote �nite causal e¤ects determined by theory as encoded

in a linear structural system of equations. The scalar index U denotes an unobserved

confounder of X, Z, and Y and the vectors Uz; Ux, and Uy of positive dimensions denote

unobserved causes of elements of Z;X, and Y respectively. Without loss of generality, we

normalize the expectations of U;Uz; Ux, and Uy to zero. The structural coe¢ cients matrices

�z; �x, and �y denote the e¤ects of elements of Uz; Ux, and Uy on elements of Z;X, and

Y respectively. Equiconfounding restricts the e¤ect of the confounder U on Y and certain

elements of X and Z to be equal; we denote this restricted e¤ect by �u and we denote

unrestricted e¤ects of U on elements of X by �u.

We employ the following notation for regression coe¢ cients and residuals. Let Y;X;

and Z be generic random vectors. We denote the coe¢ cient and residual from a regression

of Y on X by

�y:x � E(Y X 0)E(XX 0)�1 and �y:x � Y � �y:xX:

Similarly, we denote the coe¢ cient associated with X from a regression of Y on X and Z

by

�y:xjz � E(�y:z�0x:z)E(�x:z�0x:z)�1:

This representation obtains from the Frisch-Waugh-Lovell theorem (Frisch and Waugh,

1933; Lovell, 1963; see e.g. Baltagi, 1999, p. 159). Noting that

E(�y:z�
0
x:z) = E(Y �0x:z)� E(Y Z 0)E(ZZ 0)�1E(Z�0x:z) = E(Y �0x:z)

= E(Y X 0)� E(Y Z 0)E(ZZ 0)�1E(ZX 0) = E(�y:zX
0);

3This paper considers linear recursive structural systems. Recursiveness rules out �simultaneity�per-
mitting distinguishing the vectors of primary interest X and Y as the observed direct causes and responses
respectively. In particular, elements of Y are assumed to not cause elements of X. While mutual causality
is absent here, endogeneity arises due to the confounder U jointly driving the causes X and responses Y .
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we can rewrite �y:xjz as

�y:xjz = E(Y �
0
x:z)E(X�

0
x:z)

�1 = E(�y:zX
0)E(�x:zX

0)�1:

Last, we denote sample regression coe¢ cients by �̂y:x � (X0X)�1X0Y and residuals by

�̂y:x;i � Yi � �̂y:xXi, which we stack into the n � p vector �̂y:x: Similarly, we let �̂y:xjz �
(�̂0x:zX)

�1�̂0x:zY.

Throughout, we illustrate a structural system using a directed acyclic graph as in Chalak

and White (2011). A graph GS associated with a structural system S consists of a set of
vertices (nodes) fVgg, one for each variable in S, and a set of arrows faghg, corresponding to
ordered pairs of distinct vertices. An arrow agh denotes that Vg is a potential direct cause for

Vh, i.e. it appears directly in the structural equation for Vh with a corresponding possibly

nonzero coe¢ cient. We use solid nodes for observables and dashed nodes for unobservables.

For convenience, we sometimes use vector nodes to represent vectors generated by structural

system S. In this case, an arrow from vector node Z to vector node X indicates that at

least one element of Z is a direct cause of at least one element of X. We use solid nodes for

observable vectors and dashed nodes for vectors with at least one unobservable element.

For simplicity, we omit nodes for the exogenous vectors Uz; Ux;and Uy. Lastly, we use

dashed arrows emanating from U to Y , X1, Z, and possibly X2 to denote equiconfounding.

3 Equiconfounded Predictive Proxy and Response

The simplest possibility arises when the response Y and a scalar predictive proxy Z for the

unobserved confounder U are equiconfounded. The predictive proxy Z is excluded from the

equation for Y . In particular, consider the structural system of equations S1 with causal
graph G1:
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(1) Z
s
= �uU + �zUz;

(2) X1
s
= �uU + �xUx

(3) Y
s
= �oX + �uU + �yUy

with U;Uz; Ux; and Uy
pairwise uncorrelated
and with X = (X 0

1; 1)
0.

X

Y

U

Z

Graph 1 (G1)
Equiconfounded Predictive Proxy

and Response

Similar to Chalak and White (2011), we use the � s=�notation instead of �=�to empha-

size structural equations. We let ` = p = 1 in S1 as this su¢ ces for identi�cation. Here and
in what follows, we let the last element of X be degenerate at 1. The next result shows that

the structural vector �o is point identi�ed. This obtains straightforwardly by substituting

for �uU with Z � �zUz in equation (3) for Y .

Theorem 3.1 Consider structural system S1 with k > 0; ` = p = 1, and expected values
of U;Uz; Ux; Uy normalized to zero. Suppose that E(U2) and E(UxU 0x) exist and are �nite.

Then (i) E(XX 0), E(ZX 0), and E(Y X 0) exist and are �nite. Suppose further that E(XX 0)

is nonsingular. Then (ii) �o is fully identi�ed as

�o = �y�z:x .

Under standard conditions (e.g. White, 2001) the estimator �̂y�z:x � (X0X)�1X0(Y � Z)
is a consistent and asymptotically normal estimator for �o. A heteroskedasticity ro-

bust estimator (White, 1980) for the asymptotic covariance matrix for �̂y�z:x is given by

(X0X)�1(
Pn

i=1 �̂
2
y�z:x;iXiX

0
i)(X

0X)�1.

4 Equiconfounded Joint Causes and Response

Identi�cation in S1 requires the predictive proxy Z to be excluded from the equation for

Y . However, �o is also identi�ed if two causes X1 and X2 and the response Y are equicon-

founded. In particular, consider structural system S2 with causal graph G2:
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(1a) X1
s
= �uU + �x1Ux1 ;

(1b) X2
s
= �uU + �x2Ux2

(1c) X31
s
= �uU + �x3Ux3

(2) Y
s
= �oX + �uU + �yUy

with U;Ux1 ; Ux2 ; Ux3 ; and Uy
pairwise uncorrelated and
X = (X 0

1; X
0
2; X

0
31; 1)

0 = (X 0
1; X

0
2; X

0
3)
0.

X1

Y

U

X3

X2

Graph 2 (G2)
Equiconfounded Joint Causes and

Response

We can rewrite 1(a; b; c) as

(1) (X 0
1; X

0
2; X

0
31)

0 s= �uU + �xUx;

with �u = (�
0
u; �

0
u; �

0
u)
0, Ux = (U 0x1 ; U

0
x2
; U 0x3)

0, and �x a block diagonal matrix with �x1 ; �x2 ;

and �x3 at the diagonal entries and zeros at the o¤-diagonal entries. Here we let X1 and

X2 be scalars, k1 = k2 = 1, as this su¢ ces for identi�cation. The next theorem shows that

the structural vector �o is point identi�ed.

Theorem 4.1 Consider structural system S2 with dim(X3) = k3 � 0; and k1 = k2 = p = 1,
and expected values of U;Uz; Ux; Uy normalized to zero. Suppose that E(U2) and E(UxU 0x)

exist and are �nite. Then (i) E(XX 0) and E(Y X 0) exist and are �nite. Suppose further

that E(XX 0) is nonsingular. Then (ii) the vector �o is fully (over-)identi�ed by:

�o = ��JC � �y:x � [ E(X2X
0
1); E(X2X

0
1); E(X1X

0
3) ]E(XX

0)�1

= �yJC � �y:x � [ E(X2X
0
1); E(X2X

0
1); E(X2X

0
3) ]E(XX

0)�1:

The above result obtains by noting that the moment E(Y X 0) identi�es �o if E(XX
0)

is nonsingular provided that �uE(UX 0) is identi�ed. But this holds since, E(X1X
0
3) =

E(X2X
0
3) = (Cov(�uU; �uU)

0; 0) and E(X1X2) = V ar(�uU). The expressions for �
�
JC and

�yJC emphasize the bias �y:x� ��JC (or �y:x� �
y
JC) in a regression of Y on X arising due to
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endogeneity. The plug-in estimators �̂
�
JC and �̂

y
JC for �

�
JC and �

y
JC respectively:

�̂
�
JC � �̂y:x �

nX
i=1

[ X2iX
0
1i; X2iX

0
1i; X1iX

0
31i; 0 ](X

0X)�1; and

�̂
�
JC � �̂y:x �

nX
i=1

[ X2iX
0
1i; X2iX

0
1i; X2iX

0
31i; 0 ](X

0X)�1;

are consistent estimators under conditions su¢ cient to invoke the laws of large numbers.

A testable restriction of structure S2 is thatCov(X1; X3) = Cov(X2; X3) = (�uE(U
2)�0u; 0).

Thus, S2 can be falsi�ed by rejecting this null. In particular, one can reject the equicon-
founding restrictions in equations 1(a; b; c) if E(X1X

0
3) 6= E(X2X

0
3). For this, one can

employ a standard F -statistic for the overall signi�cance of the regression of X1 �X2 on

X3:

5 Equiconfounded Cause and Joint Responses

The availability of a single cause and two responses that are equiconfounded also ensures

the identi�cation of causal coe¢ cients. Speci�cally, consider structural system S3 given by:

(1a) X1
s
= �uU + �x1Ux1

(1b) X21
s
= �uU + �x2Ux2

(2a) Y1
s
= �1oX + �uU + �y1Uy1

(2b) Y2
s
= �2oX + �uU + �y2Uy2

with U;Ux1 ; Ux2 ; Uy1 ; and Uy2
pairwise uncorrelated and
X = (X 0

1; X
0
21; 1)

0 = (X 0
1; X

0
2)
0:

X1

Y1

U

Y2

X2

Graph 3 (G3)
Equiconfounded Cause and Joint Responses

Letting Y = (Y 01 ; Y
0
2)
0, �o = (�01o; �

0
2o)

0, Ux = (U 0x1 ; U
0
x2
)0, and Uy = (U 0y1 ; U

0
y2
)0, and

letting �x be a block diagonal matrix with diagonal entries �x1 and �x2 and zero o¤-

diagonal entries, and similarly for �y, we can write 1(a; b) and 2(a; b) more compactly
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as

(1) (X 0
1; X

0
21)

0 s= �uU + �xUx

(2) Y
s
= �oX + �u�pU + �yUy;

with �p a p� 1 vector with each element equal to 1 and �u = (�0u; �0u)0. Here it su¢ ces for
identi�cation that dim(X1) � k1 = 1 and p = 2. The next theorem demonstrates that the

structural matrix �o is partially identi�ed in a set consisting of two points.

Theorem 5.1 Consider structural system S3 with dim(X2) � k2 � 0; k1 = 1, p = 2;

and expected values of U;Uz; Ux; and Uy normalized to zero. Suppose that E(U2) and

E(UxU
0
x); exist and are �nite then (i) E(XX

0) and (Y X 0) exist and are �nite. Suppose

further that E(X1X
0
1) and E(X2X

0
2) are nonsingular then (ii.a) Px1 � E(�x1:x2�

0
x1:x2

) and

Px2 � E(�x2:x1�
0
x2:x1

) exist and are �nite. If also Px1 and Px2 are nonsingular then (ii.b)

E(XX 0) is nonsingular, �y:x and E(�y1:xY
0
2) exist and are �nite, and (ii.c)

�JR = [2P
�1
x1
E(X1X

0
1)� 1]2 � 4P�1x1 [E(X1X

0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2)];

exists, is �nite, and is nonnegative.

(iii) �o is partially identi�ed in a set consisting of two point. In particular, (iii.a) if

V ar(�0x1Ux1) + Cov(�uU; �uU)
0

[V ar(�uU) + V ar(�x2Ux2)]
�1Cov(�uU; �uU)� V ar(�uU) < 0;

then

0 � �yJR � E(X1X
0
1) +

1

2
Px1(�1�

p
�JR) < �

2
uE(U

2); and

��JR � E(X1X
0
1) +

1

2
Px1(�1 +

p
�JR) = �

2
uE(U

2);

and thus

�o = �
�
JR � �y:x � �p[ ��JR; E(X1X

0
2) ]E(XX

0)�1:

(iii.b) If instead the expression in (iii) is nonnegative then

�yJR = �
2
uE(U

2) and 0 � �2uE(U2) � ��JR;

and thus

�o = �
y
JR � �y:x � �p[ �

y
JR; E(X1X

0
2) ]E(XX

0)�1:
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Observe that here, unlike for the case of equiconfounded joint causes, �o is not point

identi�ed but is partially identi�ed in a set consisting of two points. Also, observe that

�1o � �2o is identi�ed from a regression of Y1 � Y2 on X. However, ��1;JR � ��2;JR =

�y1;JR � �
y
2;JR and thus this does not help fully identifying �o. Similar to S2, with E(XX 0)

nonsingular, the moment E(Y X 0) identi�es �o provided Cov(�uU; �uU) and V ar(�uU) are

identi�ed. While E(X21X1) = Cov(�uU; �uU); identi�cation of V ar(�uU) is more involved

here than in S2. Appendix B:1 presents a constructive argument showing that the moment
E(Y1Y2) delivers a quadratic equation in V ar(�uU) with two positive roots, �

y
JR and �

�
JR.

Under suitable conditions su¢ cient to invoke the law of large numbers, the following

plug-in estimators are consistent for �JR; �
�
JR; �

y
JR; �

�
JR; and �

y
JR respectively. To express

these, let P̂x1 =
1
n
�̂0x1:x2X1 and P̂x2 � 1

n
�̂0x2:x1X2: Then

�̂JR � [2P̂�1x1
1

n
X0
1X1 � 1]2 � 4P̂�1x1 [

1

n
X0
1X2 P̂

�1
x2

1

n
X0
2X1 +

1

n
�̂0y1:xY2];

�̂�JR � 1

n
X0
1X1 +

1

2
P̂x1(�1 +

q
�̂JR) and �̂yJR �

1

n
X0
1X1 +

1

2
P̂x1(�1�

q
�̂JR);

�̂
�
JR � �̂y:x � �p[ �̂�JR; 1

n
X0
1X2 ](

1

n
X0X)�1; and

�̂
y
JR � �̂y:x � �p[ �̂yJR; 1

n
X0
1X2 ](

1

n
X0X)�1:

Thus, under suitable statistical assumptions, �̂
�
JR and �̂

y
JR converge to �

�
JR and �

y
JR respec-

tively; under the structural assumptions of S3, either ��JR or �
y
JR identi�es the structural

coe¢ cient vector �o.

6 Equiconfounding in Triangular Structures

Next, we consider the classic triangular structure discussed in the Introduction and show

that if one excluded variable Z1, one element X1 of the direct causes X; and the response

Y are equally confounded by U then all the system�s structural coe¢ cients are identi�ed.

Consider structural system S4 with causal graph G4:

12



(1) Z1
s
= �uU + �zUz

(2a) X1
s
= 1oZ + �uU + �x1Ux1

(2b) X21
s
= 2oZ + �uU + �x2Ux2

(3) Y
s
= �oX + �uU + �yUy;

with Uz; U; Ux1 ; Ux2 ; and Uy
pairwise uncorrelated,
and with Z = (Z 01; 1

0)0 = (Z 01; Z
0
2)
0;

and X = (X 0
1; X21

0; 1) = (X 0
1; X

0
2)
0.

Z

Y

U

X2

X1

Graph 4 (G4)
Equiconfounded PreCause,

IntermediateCause, and Response

To rewrite 2(a; b) more compactly, let o = (
0
1o; 

0
2o)

0 and �u = (�
0
u; �

0
u)
0, and write U 0x =

(U 0x1 ; U
0
x2
)0, with �x1 and �x2 the diagonals entries of the block diagonal matrix �x with

zero o¤-diagonal entries. Then

(2) (X 0
1; X

0
21)

0 s= oZ + �uU + �xUx:

We sometimes refer to Z1 as a pre-cause variable as it is excluded from the equation for

Y and to X1 as an intermediate-cause as it mediates the e¤ect of Z1 on Y . As discussed

in the Introduction, necessary conditions for the method of IV to identify �o are that

E(Z(�uU + �yUy)) = 0 and that E(XZ 0) is full raw rank. Both of these conditions fail

in S4 since E(Z(�uU)) is generally nonzero and only one excluded variable su¢ ces for
identi�cation here so that dim(Z1) = `1 = dim(X1) = k1 = p = 1 and thus dim(Z) = ` �
dim(X) = k. Nevertheless, the next theorem demonstrates that the structural vectors o

and �o are jointly either point identi�ed or partially identi�ed in a set consisting of two

points.

Theorem 6.1 Consider structural system S4 with dim(X2) = k2 � 0; `1 = k1 = p = 1;

and expected values of U;Uz; Ux; Uy normalized to zero. Suppose that E(U2); E(UzU 0z), and

E(UxU
0
x) exist and are �nite. Then (i) E(ZZ

0); E(XZ 0); E(XX 0), E(Y X 0) and E(Y Z 0)

exist and are �nite. (ii) Suppose further that Pz1 � E(�z1:z2Z
0
1) = E(Z1Z

0
1), and thus

13



E(ZZ 0), and E(XX 0) are nonsingular. Then (ii.a) �x:z, �z:x; E(�x1:zX
0
2), and E(�y:xZ

0
1)

exist and are �nite and (ii.b)

�PC = [��0x:z1jz2 �
0
z1:x

� �0z1:x1jx2 + 1]
2 + 4P�1z1 �0z1:x1jx2 [E(�y:xZ

0
1) + E(�x1:zX

0
2) �

0
z1:x2jx1 ]

exists, is �nite, and nonnegative.

(iii) �o is either point identi�ed or partially identi�ed in a set consisting of two points. In

particular, (iii.a) if

�0x:z1jz2 �
0
z1:x

+ �0z1:x1jx2 � 1� 2P
�1
z1
�0z1:x1jx2 �

2
uE(U

2) < 0; (2)

then

�yPC �
�0x:z1jz2 �

0
z1:x

+ �0z1:x1jx2 � 1�
p
�PC

2P�1z1 �0z1:x1jx2
< �2uE(U

2) and

��PC �
�0x:z1jz2 �

0
z1:x

+ �0z1:x1jx2 � 1 +
p
�PC

2P�1z1 �0z1:x1jx2
= �2uE(U

2);

and we have

1o = �1;PC � �x1:z � [ ��PC ; 0 ]E(ZZ 0)�1;

2o = �2;PC � �x21:z � [ E(X21�
0
x1:z
)[1� ��PC P�1z1 ]�1; 0 ]E(ZZ

0)�1; and

�o = ��PC � �y:x � [ ��PC(�0x1:z1jz2 � �
�
PC P

�1
z1
+ 1); E(�x1:zX

0
2) + �

�
PC �

0
x2:z1jz2 ]E(XX

0)�1:

(iii.b) If instead the expression in (2) is nonnegative then �yPC = �2uE(U
2) and ��PC �

�2uE(U
2); and

1o = y1;PC � �x1:z � [ �
y
PC ; 0 ]E(ZZ

0)�1;

2o = y2;PC � �x21:z � [ E(X21�
0
x1:z
)[1� �yPC P�1z1 ]�1; 0 ]E(ZZ

0)�1; and

�o = �yPC � �y:x � [ �
y
PC(�

0
x1:z1jz2 � �

y
PC P

�1
z1
+ 1); E(�x1:zX

0
2) + �

y
PC �

0
x2:z1jz2 ]E(XX

0)�1:

Similar to S3, the moment E(Y X 0) identi�es �o provided �uE(UX
0) is identi�ed, which

involves identifying V ar(�uU). Appendix B.2 provides a constructive argument showing

that the moment E(Y Z 0) delivers a quadratic equation in V ar(�uU) which admits the two

roots �yPC and �
�
PC . Note that it is possible to give primitive conditions in terms of system

14



coe¢ cients and covariances among unobservables for (2) to hold, similar to the condition

given for the case of equiconfounded cause and joint responses. We forgo this here but

we note that, unlike for the case of equiconfounded cause and joint responses, if (2) holds,

it is possible for �yPC to be negative, leading to �
2
uE(U

2), and thus (o; �o), to be point

identi�ed.

The following plug in estimators are consistent estimators under conditions suitable for

the law of large numbers. First, we let P̂z1 =
1
n
�̂0z1:z2Z1, then

�̂PC = [��̂0x:z1jz2 �̂
0
z1:x

� �̂0z1:x1jx2 + 1]
2 + 4P̂�1z1 �̂0z1:x1jx2 [

1

n
�̂0y:xZ1 + (

1

n
�̂0x1:zX2)�̂

0
z1:x2jx1 ];

�̂�PC � (2P̂�1z1 �̂0z1:x1jx2)
�1[�̂0x:z1jz2 �̂

0
z1:x

+ �̂0z1:x1jx2 � 1 +
q
�̂PC ];

�̂yPC � (2P̂�1z1 �̂0z1:x1jx2)
�1[�̂0x:z1jz2 �̂

0
z1:x

+ �̂0z1:x1jx2 � 1�
q
�̂PC ],

̂�1;PC � �̂x1:z � [ �̂�PC ; 0 ](
1

n
Z0Z)�1 and ̂y1;PC � �̂x1:z � [ �̂

y
PC ; 0 ](

1

n
Z0Z)�1;

̂�2;PC � �̂x21:z � [ ( 1nX
0
21�̂x1:z)[1� �̂�PC P̂�1z1 ]�1; 0 ](

1

n
Z0Z)�1;

̂y2;PC � �̂x21:z � [ ( 1nX
0
21�̂x1:z)[1� �̂

y
PC P̂

�1
z1
]�1; 0 ](

1

n
Z0Z)�1;

�̂
�
PC � �̂y:x � [ �̂�PC (�̂0x1:z1jz2 � �̂

�
PC P̂

�1
z1
+ 1); 1

n
�̂0x1:zX2 + �̂

�
PC �̂

0
x2:z1jz2 ](

1

n
X0X)�1; and

�̂
y
PC � �̂y:x � [ �̂yPC (�̂0x1:z1jz2 � �̂

y
PC P̂

�1
z1
+ 1); 1

n
�̂0x1:zX2 + �̂

y
PC �̂

0
x2:z1jz2 ](

1

n
X0X)�1:

7 Discussion

Structures S1, S2, S3, and S4 do not exhaust the possibilities for identi�cation under
equiconfounding. An example of another linear triangular structure with equiconfound-

ing is one involving equiconfounded cause, response, and a post-response variable. For

example, assuming that KWW score (a potential cause), hourly wage (a response), and

the number of hours worked (a post response directly a¤ected by hourly wage but not by

theKWW score) are proportionally confounded, with other determinants of wage generally

endogenous, may permit identi�cation of this system�s structural coe¢ cients.

Roughly speaking, equiconfounding reduces the number of unknowns thereby permit-

ting identi�cation. In contrast, the method of IV supplies additional moments useful for

identi�cation. In general, equiconfounding leads to covariance restrictions (see e.g. Cham-
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berlain, 1977; Hausman and Taylor, 1983) that, along with exclusion restrictions, permit

identi�cation. For example, in S4, the absence of a direct causal e¤ect among X1 and ele-

ments of X2 and excluding Z1 from the equation for Y permits identifying Cov(�uU; �uU)

and V ar(�uU) given that Z1; X1, and Y are equiconfounded. This then permits identifying

S4�s coe¢ cients. Similar arguments apply to S1; S2, and S3. This is conveniently depicted
in the causal graphs by (1) a missing arrow between two nodes, one of which is linked to U

by a dashed arrow and the other by a solid arrow (e.g. X1 and X2 in S4) and (2) a missing
arrow between two nodes that are both linked to U by a dashed arrow (e.g. Z and Y in

S4). Recent papers which make use of alternative assumptions that lead to covariance re-
strictions useful for identi�cation include Lewbel (2010), Altonji, Conley, Elder, and Taber

(2011), and Galvao, Montes-Rojasz, and Song (2012).

As discussed in Section 4, the availability of multiple equiconfounded variables can

overidentify structural coe¢ cients, leading to tests for equiconfounding. Further, equicon-

founding can be used to conduct tests for hypotheses of interest. For example, one could test

for endogeneity under equiconfounding without requiring valid exogenous instruments. To

illustrate, consider the triangular structure discussed in structure S4 of Section 6 then The-
orem 6.1 gives that under equiconfounding �o is either fully identi�ed or partially identi�ed

in f��PC ; �
y
PCg: Theorem 6.1 allows for the possibility V ar(�uU) = 0 of zero confounding

or exogeneity. Further, if X is exogenous then clearly the regression coe¢ cient �y:x also

identi�es �o. This over-identi�cation provides the foundation for testing for the exogeneity

of X without requiring the availability of exogenous instruments with dimension at least

as large as that of X. Instead, it su¢ ces that a scalar Z1 and one element X1 of X are

equally (un)a¤ected by U as is Y . For example, in estimating an Engle curve for a partic-

ular commodity, total income Z1 is often used as an instrument for total expenditures X1

which may be measured with error. Nevertheless, as Lewbel (2010, section 4) notes, �it

is possible for reported consumption and income to have common sources of measurement

errors�which could invalidate income as an instrument. One possibility for testing the

absence of common sources of measurement error is to assume that the consumption Y of

the commodity of interest, total expenditures X1, and income Z1 are misreported by an

equal proportion. In the absence of common sources of measurement error, V ar(�uU) = 0
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and one of the equiconfounding estimands should coincide with the regression coe¢ cient

�y:x, providing the foundation for such a test. A statistic for this test can be based on the

di¤erence between the regression estimator �̂y:x and the equiconfounding estimators �̂
�
PC

and �̂
y
PC for �o or alternatively on the estimators �̂

�
PC and �̂

y
PC for V ar(�uU). Such as

test statistic must account for V ar(�uU) being possibly partially identi�ed in f��PC ; �
y
PCg.

We do not study formal properties of such tests here but we note the possibility of a test

statistic based on minf�̂�PC ; �̂
y
PCg. A similar test for exogeneity can be constructed in other

structures, e.g. S3.
A key message of this paper is that, when exogeneity and conditional exogeneity are

not plausible, one can proceed to identify structural coe¢ cients and test hypotheses in lin-

ear recursive structures by relying on a parsimonious alternative assumption that restricts

the shape of confounding, namely equiconfounding. Here, we begin to study identi�cation

via restricting the shape of confounding by focusing on equiconfounding in linear struc-

tures but there are several potential extensions of interest. One possibility is to maintain

the equiconfounding assumption and relax the constant e¤ect structure e.g. by allowing

for random coe¢ cients across individuals. Another possibility is to maintain the constant

e¤ect linear assumption and study bounding the structural coe¢ cients under shape restric-

tions on confounding weaker than equiconfounding. Relaxing the restriction on the shape

of confounding could potentially increase the plausibility of this restriction albeit while

possibly leading to wider identi�cation sets.

8 Conclusion

This paper obtains identi�cation of structural coe¢ cients in linear systems of structural

equations with endogenous variables under the assumption of equiconfounding. In partic-

ular, standard instrumental variables and control variables need not be available in these

systems. Instead, we demonstrate an alternative way in which su¢ ciently specifying the

causal relations among unobservables, as Hal White recommends (e.g. Chalak and White,

2011; White and Chalak 2010 and 2011; White and Lu, 2011(a,b); Hoderlein, Su, and

White, 2011), can support identi�cation of causal e¤ects. In particular, we introduce the

notion of equiconfounding, where one or two observables are equally a¤ected by the un-
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observed confounder as is the response, and show that, along with exclusion restrictions,

equiconfounding permits the identi�cation of all the system�s structural coe¢ cients. We

distinguish among several cases by the structural role of the equiconfounded variables. We

study the cases of equiconfounded (1) predictive proxy and response, (2) joint causes and

response, (3) cause and joint responses, and (4) and pre-cause, intermediate-cause, and re-

sponse. We provide conditions under which we obtain either full identi�cation of structural

coe¢ cients or partial identi�cation in a set consisting of two points.

As discussed in Section 7, several extensions of this work are of potential interest includ-

ing characterizing identi�cation under equiconfounding in linear structural systems, devel-

oping the asymptotic distributions and properties for the plug-in estimators suggested here,

extending the analysis to structures with heterogenous e¤ects, relaxing the restriction on

the shape of confounding, developing tests for equiconfounding and for endogeneity, as well

as employing these results in empirical applications. We leave pursuing these extensions to

future work.

Appendix A: Mathematical Proofs

Proof of Theorem 3.1 (i) Given that the structural coe¢ cients of S1 are �nite and that

E(U2) and E(UxU 0x) exist and are �nite, the following moments exist and are �nite:

E(XX 0) = [
�uE(U

2)�0u + �xE(UxU
0
x)�x; 0

0; 1
]

E(ZX 0) = �uE(UX
0) = [ �uE(U

2)�0u; 0 ]

E(Y X 0) = �oE(XX
0) + �uE(UX

0) = �oE(XX
0) + [ �uE(U

2)�0u; 0 ]:

(ii) Substituting for �uU in (3) with its expression from (1), �uU = Z � �zUz; gives

Y � Z = �oX � �zUz + �yUy; and thus E[(Y � Z)X 0] = �oE(XX
0):

It follows from the nonsingularity of E(XX 0) that �o is point identi�ed as

�o = �y�z:x � E[(Y � Z)X 0]E(XX 0)�1: �

Proof of Theorem 4.1 (i) Given that the structural coe¢ cients of S2 are �nite and that
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E(U2) and E(UxU 0x) exist and are �nite, we have that

E(XX 0) = [
�uE(U

2)�0u + �xE(UxU
0
x)�

0
x; 0

0; 1
]; and

E(Y X 0) = �oE(XX
0) + [ �uE(UX

0
1); �uE(UX

0
2); �uE(UX

0
3) �uE(U) ]

= �oE(XX
0) + [ �2uE(U

2); �2uE(U
2); �uE(U

2)�0u 0 ]

exist and are �nite. (ii) Further, �2uE(U
2) is identi�ed by �2uE(U

2) = E(X2X
0
1) and

�uE(U
2)�u is overidenti�ed by �uE(U

2)�u = E(X31X
0
1) = E(X31X

0
2). Given that E(XX

0)

is nonsingular, it follows that �o is fully (over-)identi�ed by

�o = ��JC � �y:x � [ E(X2X
0
1); E(X2X

0
1); E(X1X

0
3) ]E(XX

0)�1

= �yJC � �y:x � [ E(X2X
0
1); E(X2X

0
1); E(X2X

0
3) ]E(XX

0)�1: �

Proof of Theorem 5.1 (i) Given that the structural coe¢ cients of S4 and E(U2) and
E(UxU

0
x) exist and are �nite we have

E(XX 0) = [
�uE(U

2)�0u + �xE(UxU
0
x)�

0
x; 0

0; 1
]; and

E(Y X 0) = �oE(XX
0) + �u�p[ E(UX

0
1); E(UX

0
2) ]

= �oE(XX
0) + �p[ �

2
uE(U

2); [ �uE(U
2)�0u; 0 ] ]

exists and are �nite.

(ii:a) Given that E(X1X
0
1) and E(X2X

0
2) are nonsingular, we have

Px1 � E(�x1:x2�
0
x1:x2

) = E(�x1:x2X
0
1) = E(X1X

0
1)� �x1:x2E(X2X

0
1) and

Px2 � E(�x2:x1�
0
x2:x1

) = E(�x2:x1X
0
2) = E(X2X

0
2)� �x2:x1E(X1X

0
2)

exist and are �nite. (ii:b) If also Px1 and Px2 are nonsingular, then E(XX
0)�1 exists, is

�nite, and is given by (e.g. Baltagi, 1999, p. 185):

E(XX 0)�1 =

�
E(X1X

0
1); E(X1X

0
2)

E(X2X
0
1); E(X2X

0
2)

��1
=

�
P�1x1 ; ��0x2:x1P�1x2

��0x1:x2P�1x1 ; P�1x2

�
;

with P�1x1 �x1:x2 = �
0
x2:x1

P�1x2 : It follows that �y:x exists and is �nite. To show that

E(�y1:xY
0
2) = E(Y1Y

0
2)� E(Y1X 0)E(XX 0)�1E(XY 02)
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exists and is �nite, note that

E(Y Y 0) = E[(�oX + �u�pU + �yUy)(�oX + �u�pU + �yUy)
0]

= �oE(XX
0)�0o + �oE(XU)�

0
p�

0
u + �u�pE(UX

0)�0o + �p�
0
p�

2
uE(U

2) + �yE(UyU
0
y)�

0
y:

Substituting for the diagonal term E(Y1Y
0
2) in the above expression for E(�y1:xY

0
2) then

gives

E(�y1:xY
0
2) = �1oE(XX

0)�02o + �1o�uE(XU) + �uE(UX
0)�02o

+�2uE(U
2)� E(Y1X 0)E(XX 0)�1E(XY 02);

and thusE(�y1:xY
0
2) exists and is �nite given that �uE(UX

0) = [ �2uE(U
2); [ �uE(U

2)�0u; 0 ] ]:

(ii:c) Next, we have that

�JR = [2P
�1
x1
E(X1X

0
1)� 1]2 � 4P�1x1 [E(X1X

0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2)];

exists and is �nite as it is a function of �nite moments and coe¢ cients. We now show that

�JR is nonnegative. Given the nonsingularity of E(XX 0), substituting for

�o = [E(Y X
0)� �u�pE(UX 0)]E(XX 0)�1;

in the expression for E(Y Y 0) gives

E(Y Y 0) = [E(Y X 0)� �u�pE(UX 0)]E(XX 0)�1E(XX 0)E(XX 0)�1[E(XY 0)� E(XU 0)�0p�0u]

+[E(Y X 0)� �u�pE(UX 0)]E(XX 0)�1E(XU)�0p�
0
u

+�u�pE(UX
0)E(XX 0)�1[E(XY 0)� E(XU)�0p�0u] + �p�0p�2uE(U2) + �yE(UyU 0y)�0y

= E(Y X 0)E(XX 0)�1E(XY 0)� �u�pE(UX 0)E(XX 0)�1E(XU 0)�0p�
0
u

+�p�
0
p�

2
uE(U

2) + �yE(UyU
0
y)�

0
y:

The o¤-diagonal term then gives

E(�y1:xY
0
2) = E(Y1Y

0
2)� E(Y1X 0)E(XX 0)�1E(XY 02)

= �2uE(U
2)� �uE(UX 0)E(XX 0)�1E(XU 0)�0u
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Substituting for �uE(UX 0) = [ �2uE(U
2); [ �uE(U

2)�0u; 0 ] ] = [ �
2
uE(U

2); E(X1X
0
2) ]

gives

�uE(UX
0)E(XX 0)�1E(XU)�0u

= [ �2uE(U
2); E(X1X

0
2) ]

�
P�1x1 ; ��0x2:x1P�1x2

��0x1:x2P�1x1 ; P�1x2

�
[ �2uE(U

2); E(X1X
0
2) ]

0

= �4uE(U
2)2P�1x1 � E(X1X

0
2)�

0
x1:x2

P�1x1 �
2
uE(U

2)

��2uE(U2)�0x2:x1P
�1
x2
E(X2X

0
1) + E(X1X

0
2)P

�1
x2
E(X2X

0
1):

Thus, we expand the term E(X1X
0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2) in �JR as:

E(X1X
0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2)

= E(X1X
0
2)P

�1
x2
E(X2X

0
1) + �

2
uE(U

2)� �4uE(U2)2P�1x1 + E(X1X
0
2)�

0
x1:x2

P�1x1 �
2
uE(U

2)

+�2uE(U
2)�0x2:x1P

�1
x2
E(X2X

0
1)� E(X1X

0
2)P

�1
x2
E(X2X

0
1)

= ��4uE(U2)2P�1x1 + �
2
uE(U

2)[2P�1x1 �x1:x2E(X2X
0
1) + 1]

= ��4uE(U2)2P�1x1 + �
2
uE(U

2)[2P�1x1 [E(X1X
0
1)� Px1 ] + 1]

= ��4uE(U2)2P�1x1 + �
2
uE(U

2)[2P�1x1 E(X1X
0
1)� 1]

where we use P�1x1 �x1:x2 = �
0
x2:x1

P�1x2 and Px1 = E(X1X
0
1)� �x1:x2E(X2X

0
1). Then

�JR � [2P�1x1 E(X1X
0
1)� 1]2 � 4P�1x1 [E(X1X

0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2)]

= [2P�1x1 E(X1X
0
1)� 1]2 + 4�4uE(U2)2P�2x1 � 4P

�1
x1
�2uE(U

2)[2P�1x1 E(X1X
0
1)� 1]

= f[2P�1x1 E(X1X
0
1)� 1]� 2P�1x1 �

2
uE(U

2)g2 � 0:

(iii) We begin by showing that

V ar(�0x1Ux1) + Cov(�uU; �uU)
0[V ar(�uU) + V ar(�x2Ux2)]

�1Cov(�uU; �uU)� V ar(�uU)
(3)

has the same sign as the expression 2P�1x1 E(X1X
0
1) � 1 � 2P�1x1 �2uE(U2) from �JR: First,

clearly, (3) can be negative, zero, or positive (e.g. set dim(X21) = 1, V ar(�0x1Ux1) = 1; and

V ar(�x2Ux2) = V ar(�uU) =
1
2
: Then (3) reduces to 1 � 1

2
V ar(�uU) with sign depending

on V ar(�uU)). Next, multiplying by Px1 � E(�x1:x2�0x1:x2) preserves the sign of (3) and we
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obtain

2E(X1X
0
1)� Px1 � 2�2uE(U2)

= 2E(X1X
0
1)� [E(X1X

0
1)� E(X1X

0
2)E(X2X

0
2)
�1E(X2X

0
1)]� 2�2uE(U2)

= E(X1X
0
1) + E(X1X

0
2)E(X2X

0
2)
�1E(X2X

0
1)� 2�2uE(U2):

But we have

E(X1X
0
1) = �2uE(U

2) + �x1E(Ux1U
0
x1
)�0x1 and

E(X2X
0
2) = [

�uE(UU
0)�0u + �x2E(Ux2U

0
x2
)�0x2 ; 0

0; 1
]:

Then using [ �uE(U2)�
0
u; 0 ] = E(X1X

0
2) gives

E(X1X
0
1) + E(X1X

0
2)E(X2X

0
2)
�1E(X2X

0
1)� 2�2uE(U2)

= �2uE(U
2) + �x1E(Ux1U

0
x1
)�0x1

+[ �uE(U
2)�0u; 0 ][

�uE(UU
0)�0u + �x2E(Ux2U

0
x2
)�0x2 ; 0

0; 1
]�1[

�uE(U
2)�u

0
]� 2�2uE(U2)

= V ar(�0x1Ux1) + Cov(�uU; �uU)
0[V ar(�uU) + V ar(�x2Ux2)]

�1Cov(�uU; �uU)� V ar(�uU):

(iii:a) Now, recall from (ii:c) that

�JR = f[2P�1x1 E(X1X
0
1)� 1]� 2P�1x1 �

2
uE(U

2)g2:

Suppose that (3) is negative, thenp
�JR =

��2P�1x1 E(X1X
0
1)� 1� 2P�1x1 �

2
uE(U

2)
�� = �2P�1x1 E(X1X

0
1) + 1 + 2P

�1
x1
�2uE(U

2);

and we have

�yJR � E(X1X
0
1) +

1

2
Px1(�1�

p
�JR)

= 2E(X1X
0
1)� Px1 � �2uE(U2)

= V ar(�0x1Ux1) + Cov(�uU; �uU)
0[V ar(�uU) + V ar(�x2Ux2)]

�1Cov(�uU; �uU)

< �2uE(U
2) (and � 0),

and

��JR � E(X1X
0
1) +

1

2
Px1(�1 +

p
�JR) = �

2
uE(U

2):

22



(iii:b) Suppose instead that (3) is nonnegative thenp
�JR =

��2P�1x1 E(X1X
0
1)� 1� 2P�1x1 �

2
uE(U

2)
�� = 2P�1x1 E(X1X

0
1)� 1� 2P�1x1 �

2
uE(U

2);

and we have

�yJR = �
2
uE(U

2);

and

��JR = V ar(�0x1Ux1) + Cov(�uU; �uU)
0[V ar(�uU) + V ar(�x2Ux2)]

�1Cov(�uU; �uU)

� �2uE(U
2) � 0:

Thus, �2uE(U
2) is partially identi�ed in the set f�yJR; ��JRg. It follows from the moment

E(Y X 0) = �oE(XX
0) + �p[ �

2
uE(U

2); E(X1X
0
2) ];

and the nonsingularity of E(XX 0) that �o is partially identi�ed in the set f��JR; �
y
JRg: �

Proof of Theorem 6.1 (i) We have that

E(ZZ 0) = [
�2uE(U

2); 0
0; 1

];

E(XZ 0) = E(
[X 0

1; X
0
21]

0Z 0

Z 0
) = [

oE(ZZ
0) + [ �uE(U

2)�0u 0 ]
[ 0; 1 ]

];

E(XX 0) = [
oE(ZX

0) + �uE(UX
0) + �xE(UxX

0); E(X)
E(X 0); 1

]

= [
oE(ZX

0) + [ [ �uE(U
2)�0u; 0 ]

0
o + �uE(U

2)�0u; 0 ] + [ �xE(UxUx)
0�0x; 0 ]; [ 0

0; 10 ]0

[ 0; 1 ]; 1
];

E(Y X 0) = �oE(XX
0) + �uE(UX

0) = �oE(XX
0)

+[ [ �2uE(U
2); 0 ]01o + �

2
uE(U

2); [ [ �2uE(U
2); 0 ]02o + �uE(U

2)�0u; 0 ] ];

E(Y Z 0) = �oE(XZ
0) + [ �2uE(U

2); 0 ];

Thus, these moments exist and are �nite since they are functions of existing �nite coe¢ -

cients and moments.
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(ii:a) Given that Pz1 � E(�z1:z2Z 01) = E(Z1Z 01) is nonsingular and Z2 = 1, we have that

E(ZZ 0)�1 =

�
P�1z1 ; ��0z2:z1P�1z2

��0z1:z2P�1z1 ; P�1z2

�
=

�
E(Z1Z

0
1)
�1 0

0 1

�
is nonsingular and thus �x:z and E(�x1:zX

0
2) = E(X1X

0
2)��x1:zE(ZX 0

2) exist and are �nite.

With E(XX 0) also nonsingular, �z:x exists and is �nite. Also,

E(�y:xZ
0
1) = E(Y �

0
z1:x
) = �oE(X�

0
z1:x
) + �uE(U�

0
z1:x
) + �yE(Uy�

0
z1:x
) = �uE(U�

0
z1:x
):

Using E(X1X
0
2) = 1oE(ZX

0
2) + �uE(UX

0
2) then gives

E(�y:xZ
0
1) = �uE(U�

0
z1:x
) = �uE(UZ

0
1)� �uE(UX 0)E(XX 0)�1E(XZ 01)

= �2uE(U
2)� [ [ �2uE(U2); 0 ]01o + �2uE(U2); E(X1X

0
2)� 1oE(ZX 0

2) ]�
0
z1:x

exists and is �nite.

(ii:b) We have that �PC exists and is �nite as it is a function of �nite coe¢ cients and

moments. Next, we verify that �PC � 0: We begin by expanding the term E(�y:xZ
0
1) in

�PC . For this, we substitute for 1o with

1o = �x1:z � [ �2uE(U2); 0 ]E(ZZ 0)�1;

in ��uE(UX 0)�0z:x which gives

��uE(UX 0)�0z:x = �[ [ �2uE(U2); 0 ]01o + �2uE(U2); E(X1X
0
2)� 1oE(ZX 0

2) ]�
0
z:x

= �[ �2uE(U2); 0 ]�0x1:z�
0
z:x1jx2 + [ �

2
uE(U

2); 0 ]E(ZZ 0)�1[ �2uE(U
2); 0 ]0�0z:x1jx2

��2uE(U2)�0z:x1jx2 � E(�x1:zX
0
2)�

0
z:x2jx1 � [ �

2
uE(U

2); 0 ]�0x2:z�
0
z:x2jx1

= ��2uE(U2)�0x1:z1jz2�
0
z:x1jx2 + �

4
uE(U

2)2P�1z1 �
0
z:x1jx2 � �

2
uE(U

2)�0z:x1jx2 � E(�x1:zX
0
2)�

0
z:x2jx1

��2uE(U2)�0x2:z1jz2�
0
z:x2jx1 ;

where we make use of [ �2uE(U
2); 0 ]E(ZZ 0)�1[ �2uE(U

2); 0 ]0 = �4uE(U
2)2P�1z1 . Thus,

E(�y:xZ
0
1) = �2uE(U

2)� �uE(UX 0)�0z1:x

= �2uE(U
2)� �2uE(U2)�0x1:z1jz2�

0
z1:x1jx2 + �

4
uE(U

2)2P�1z1 �
0
z1:x1jx2

��2uE(U2)�0z1:x1jx2 � E(�x1:zX
0
2)�

0
z1:x2jx1 � �

2
uE(U

2)�0x2:z1jz2�
0
z1:x2jx1

= �2uE(U
2)� �2uE(U2)�0x:z1jz2�

0
z1:x

+ �4uE(U
2)2P�1z1 �

0
z1:x1jx2

��2uE(U2)�0z1:x1jx2 � E(�x1:zX
0
2)�

0
z1:x2jx1 :
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Then

�PC � [��0x:z1jz2 �
0
z1:x

� �0z1:x1jx2 + 1]
2 + 4P�1z1 �0z1:x1jx2 [E(�y:xZ

0
1) + E(�x1:zX

0
2) �

0
z1:x2jx1 ]

= [��0x:z1jz2�
0
z1:x

� �0z1:x1jx2 + 1]
2

+4P�1z1 �
0
z1:x1jx2 [�

2
uE(U

2)� �2uE(U2)�0x:z1jz2�
0
z1:x

+ �4uE(U
2)2P�1z1 �

0
z1:x1jx2

��2uE(U2)�0z1:x1jx2 � E(�x1:zX
0
2)�

0
z1:x2jx1 + E(�x1:zX

0
2)�

0
z1:x2jx1 ]

= f[�0x:z1jz2�
0
z1:x

+ �0z1:x1jx2 � 1]� 2P
�1
z1
�0z1:x1jx2�

2
uE(U

2)g2 � 0:

(iii) Suppose that

�0x:z1jz2�
0
z1:x

+ �0z1:x1jx2 � 1� 2P
�1
z1
�0z1:x1jx2�

2
uE(U

2) < 0:

Then p
�PC =

���0x:z1jz2�0z1:x + �0z1:x1jx2 � 1� 2P�1z1 �0z1:x1jx2�2uE(U2)��
= ��0x:z1jz2�

0
z1:x

� �0z1:x1jx2 + 1 + 2P
�1
z1
�0z1:x1jx2�

2
uE(U

2);

and thus

�yPC �
�0x:z1jz2�

0
z1:x

+ �0z1:x1jx2 � 1�
p
�PC

2P�1z1 �
0
z1:x1jx2

=
�0x:z�

0
z:x + �

0
z:x1jx2 � 1� P

�1
z1
�0z1:x1jx2�

2
uE(U

2)

P�1z1 �
0
z1:x1jx2

<
P�1z1 �

0
z1:x1jx2�

2
uE(U

2)

P�1z1 �
0
z1:x1jx2

= �2uE(U
2);

and

��PC �
�0x:z1jz2�

0
z1:x

+ �0z1:x1jx2 � 1 +
p
�PC

2P�1z1 �
0
z1:x1jx2

= �2uE(U
2):

Now, with E(ZZ 0) nonsingular, we have

E(X1Z
0) = 1oE(ZZ

0) + [ �2uE(U
2); 0 ]; or

1o = �x1:z � [ ��PC ; 0 ]E(ZZ 0)�1:

Further, with E(XX 0) nonsingular, we have

E(Y X 0) = �oE(XX
0) + �uE(UX

0); or

�o = fE(Y X 0)� [ [ �2uE(U2); 0 ]01o + �2uE(U2); E(X1X
0
2)� 1oE(ZX 0

2) ]gE(XX 0)�1:
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Substituting for 1o gives

[ �2uE(U
2); 0 ]01o + �

2
uE(U

2)

= [ �2uE(U
2); 0 ]�0x1:z � [ �

2
uE(U

2); 0 ]E(ZZ 0)�1[ �2uE(U
2); 0 ]0 + �2uE(U

2);

= [ �2uE(U
2); 0 ]�0x1:z � �

4
uE(U

2)2 P�1z1 + �
2
uE(U

2)

= �2uE(U
2) (�0x1:z1jz2 � �

2
uE(U

2) P�1z1 + 1);

and

E(X1X
0
2)� 1oE(ZX 0

2) = E(X1X
0
2)� [�x1:z � [ �2uE(U2); 0 ]E(ZZ 0)�1]E(ZX 0

2)

= E(�x1:zX
0
2) + [ �

2
uE(U

2); 0 ]�0x2:z = E(�x1:zX
0
2) + �

2
uE(U

2) �0x2:z1jz2 ;

so that

�o = �y:x � [ ��PC (�0x1:z1jz2 � �
�
PC P

�1
z1
+ 1); E(�x1:zX

0
2) + �

�
PC �

0
x2:z1jz2 ]E(XX

0)�1:

Also, we have

E(X1X
0
21) = 1oE(ZX

0
21) + �uE(UX

0
21)

= 1oE(ZX
0
21) + �uE(UZ

0)02o + �uE(U
2)�0u

= 1oE(ZX
0
21) + [ �

2
uE(U

2); 0 ]02o + �uE(U
2)�0u and

E(X21Z
0) = 2oE(ZZ

0) + [ �uE(U
2)�0u; 0 ]:

Substituting for

2o = �x21:z � [ �uE(U2)�0u; 0 ]E(ZZ 0)�1

in the expression for E(X1X
0
21) gives

E(X1X
0
21) = 1oE(ZX

0
21) + [ �

2
uE(U

2); 0 ]�0x21:z

�[ �2uE(U2); 0 ]E(ZZ 0)�1[ �uE(U2)�0u; 0 ]0 + �uE(U2)�0u
= 1oE(ZX

0
21) + [ �

2
uE(U

2); 0 ]�0x21:z � �
2
uE(U

2)P�1z1 �uE(U
2)�0u + �uE(U

2)�0u:

Further substituting for 1o with [E(X1Z
0)� [ �2uE(U2); 0 ]]E(ZZ 0)�1 gives

E(X1X
0
21)� [E(X1Z

0)� [ �2uE(U2); 0 ]]E(ZZ 0)�1E(ZX 0
21)� [ �2uE(U2); 0 ]�0x21:z

= ��2uE(U2)P�1z1 �uE(U
2)�0u + �uE(U

2)�0u,
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or

E(X1�
0
x21:z

) = ��2uE(U2)P�1z1 �uE(U
2)�0u + �uE(U

2)�0u:

Substituting for

�uE(U
2)�0u = E(X21�

0
x1:z
)[1� �2uE(U2)P�1z1 ]

�1

in the expression for 2o gives

2o = �x21:z � [ �uE(U2)�0u; 0 ]E(ZZ 0)�1

= �x21:z � [ E(X21�
0
x1:z
)[1� ��PCP�1z1 ]�1; 0 ]E(ZZ

0)�1:

(iii:b) Suppose instead that

�0x:z1jz2�
0
z1:x

+ �0z1:x1jx2 � 1� 2P
�1
z1
�0z1:x1jx2�

2
uE(U

2) � 0:

Then p
�PC =

���0x:z1jz2�0z1:x + �0z1:x1jx2 � 1� 2P�1z1 �0z1:x1jx2�2uE(U2)��
= �0x:z1jz2�

0
z1:x

+ �0z1:x1jx2 � 1� 2P
�1
z1
�0z1:x1jx2�

2
uE(U

2);

and thus

�yPC = �
2
uE(U

2);

and

��PC =
�0x:z1jz2�

0
z1:x

+ �0z1:x1jx2 � 1� P
�1
z1
�0z1:x1jx2�

2
uE(U

2)

P�1z1 �
0
z1:x1jx2

�
P�1z1 �

0
z1:x1jx2�

2
uE(U

2)

P�1z1 �
0
z1:x1jx2

= �2uE(U
2):

It follows that

1o = y1 � �x1:z � [ �yPC ; 0 ]E(ZZ
0)�1;

2o = y2 � �x2:z � [ E(X21�
0
x1:z
)[1� �yPC P�1z1 ]�1; 0 ]E(ZZ

0)�1; and

�o = �y � �y:x � [ �yPC (�0x1:z1jz2 � �
y
PC P

�1
z1
+ 1); E(�x1:zX

0
2) + �

y
PC �

0
x2:z1jz2 ]E(XX

0)�1: �
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Appendix B: Constructive Identi�cation

B.1 Equiconfounded Cause and Joint Responses: Constructive Identi�cation

We present an argument to constructively demonstrate how the expression for �JR and

the identi�cation of �2uE(U
2), and thus �o, in the proof of Theorem 5.1 obtain. Recall that

in S3
E(Y X 0) = �oE(XX

0) + �p[ �
2
uE(U

2); [ �uE(U
2)�0u; 0 ] ]:

We have that �uE(U2)�
0
u = E(X1X

0
2). It remains to identify �

2
uE(U

2). For this, recall

that the proof of Theorem 5.1 gives

E(Y Y 0) = E(Y X 0)E(XX 0)�1E(XY 0)� �u�pE(UX 0)E(XX 0)�1�uE(XU)�
0
p

+�p�
0
p�

2
uE(U

2) + �yE(UyU
0
y)�

0
y;

which we rewrite as

�p�
0
p�

2
uE(U

2)� �u�pE(UX 0)E(XX 0)�1E(XU)�0p�
0
u � E(�y:xY 0) + �yE(UyU 0y)�0y = 0: (4)

From the proof of Theorem 5.1, we also have

�uE(UX
0)E(XX 0)�1E(XU)�0u

= �4uE(U
2)2P�1x1 � E(X1X

0
2)�

0
x1:x2

P�1x1 �
2
uE(U

2)

��2uE(U2)�0x2:x1P
�1
x2
E(X2X

0
1) + E(X1X

0
2)P

�1
x2
E(X2X

0
1):

Thus, collecting the o¤-diagonal terms in equation (4) gives:

�2uE(U
2)� �4uE(U2)2P�1x1 + E(X1X

0
2)�

0
x1:x2

P�1x1 �
2
uE(U

2)

+ �2uE(U
2)�0x2:x1P

�1
x2
E(X2X

0
1)� E(X1X

0
2)P

�1
x2
E(X2X

0
1)� E(�y1:xY 02) = 0:

This is a quadratic equation in �2uE(U
2) of the form

a�4uE(U
2)2 + b�2uE(U

2) + c = 0;
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with

a = P�1x1 ;

b = �[1 + E(X1X
0
2)�

0
x1:x2

P�1x1 + �
0
x2:x1

P�1x2 E(X2X
0
1)]

= �[1 + E(X1X
0
2)�

0
x1:x2

P�1x1 + P
�1
x1
�x1:x2E(X2X

0
1)]

= �[1 + 2P�1x1 �x1:x2E(X2X
0
1)]

= �[1 + 2P�1x1 [E(X1X
0
1)� Px1 ]] = �[2P�1x1 E(X1X

0
1)� 1], and

c = E(X1X
0
2)P

�1
x2
E(X2X

0
1) + E(�y1:xY

0
2);

where we make use of P�1x1 �x1:x2 = �
0
x2:x1

P�1x2 and Px1 = E(X1X
0
1) � �x1:x2E(X2X

0
1): The

discriminant of this quadratic equation gives the expression for �JR = b
2 � 4ac. Theorem

5.1(ii:c) gives that �JR � 0 and (iii) gives the two roots �yPC and �
�
PC of this quadratic

equation

�b�
p
�JR

2a
=
1

2
Px1f2P�1x1 E(X1X

0
1)� 1�

p
�JRg = E(X1X

0
1) +

1

2
Px1(�1�

p
�JR);

and shows that these are nonnegative. One of these roots identi�es �2uE(U
2), depending

on the sign of

V ar(�0x1Ux1) + Cov(�uU; �uU)
0[V ar(�uU) + V ar(�x2Ux2)]

�1Cov(�uU; �uU)� V ar(�uU):

�o is then identi�ed from the moment E(Y X 0) = �oE(XX
0) + �p[ �

2
uE(U

2); E(X1X
0
2) ]:

B.2 Equiconfounding in Triangular Structures: Constructive Identi�cation

We present an argument to constructively demonstrate how the expression for �PC

and the identi�cation of �2uE(U
2) in the proof of Theorem 6.1 obtain. From the proof of

Theorem 6.1, we have that

�o = fE(Y X 0)� �uE(UX 0)gE(XX 0)�1 = �y:x � �uE(UX 0)E(XX 0)�1:

Substituting for �o in the expression for E(Y Z
0) gives

E(Y Z 0) = �oE(XZ
0) + [ �2uE(U

2); 0 ];

= �y:xE(XZ
0)� �uE(UX 0)E(XX 0)�1E(XZ 0) + [ �2uE(U

2) 0 ], or

�E(�y:xZ 0)� �uE(UX 0)�0z:x + [ �
2
uE(U

2) 0 ] = 0:
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From the proof of Theorem 6.1, we have

��uE(UX 0)�0z:x = ��2uE(U2)�0x1:z1jz2�
0
z:x1jx2 + �

4
uE(U

2)2P�1z1 �
0
z:x1jx2 � �

2
uE(U

2)�0z:x1jx2

�E(�x1:zX 0
2)�

0
z:x2jx1 � �

2
uE(U

2)�0x2:z1jz2�
0
z:x2jx1 :

Substituting for ��uE(UX 0)�0z:x in the above equality then gives

� E(�y:xZ 0)� �2uE(U2)�0x1:z1jz2�
0
z:x1jx2 + �

4
uE(U

2)2P�1z1 �
0
z:x1jx2 � �

2
uE(U

2)�0z:x1jx2

� E(�x1:zX 0
2)�

0
z:x2jx1 � �

2
uE(U

2)�0x2:z1jz2�
0
z:x2jx1 + [ �

2
uE(U

2) 0 ] = 0:

Collecting the �rst elements of this vector equality gives

� E(�y:xZ 01)� �2uE(U2)�0x1:z1jz2�
0
z1:x1jx2 + �

4
uE(U

2)2P�1z1 �
0
z1:x1jx2 � �

2
uE(U

2)�0z1:x1jx2

� E(�x1:zX 0
2)�

0
z1:x2jx1 � �

2
uE(U

2)�0x2:z1jz2�
0
z1:x2jx1 + �

2
uE(U

2) = 0:

This is a quadratic equation in �2uE(U
2) of the from

a�4uE(U
2)2 + b�2uE(U

2) + c = 0;

with

a = P�1z1 �
0
z1:x1jx2 ;

b = ��0x:z1jz2�
0
z1:x

� �0z1:x1jx2 + 1; and

c = �E(�y:xZ 01)� E(�x1:zX 0
2)�

0
z1:x2jx1 :

The discriminant of this equation gives the expression for �PC = b
2 � 4ac in Theorem 6.1

where it is shown that �PC � 0 and that the solutions to this quadratic are �yPC and ��PC :

�b�
p
�PC

2a
=
�0x:z1jz2�

0
z1:x

+ �0z1:x1jx2 � 1�
p
�PC

2P�1z1 �
0
z1:x1jx2

:

This then enables the identi�cation of (�o; o) as shown in the proof of Theorem 6.1.
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